Graduate Texts in Mathematics 204

Total Page:16

File Type:pdf, Size:1020Kb

Graduate Texts in Mathematics 204 Graduate Texts in Mathematics 204 Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer Science+Business Media, LLC Graduate Texts in Mathematics TAKEUTIlZARING.lntroduction to 34 SPITZER. Principles of Random Walk. Axiomatic Set Theory. 2nd ed. 2nded. 2 OxrOBY. Measure and Category. 2nd ed. 35 Al.ExANDERIWERMER. Several Complex 3 SCHAEFER. Topological Vector Spaces. Variables and Banach Algebras. 3rd ed. 2nded. 36 l<ELLEyINAMIOKA et al. Linear Topological 4 HILTON/STAMMBACH. A Course in Spaces. Homological Algebra. 2nd ed. 37 MONK. Mathematical Logic. 5 MAc LANE. Categories for the Working 38 GRAUERT/FRlTZSCHE. Several Complex Mathematician. 2nd ed. Variables. 6 HUGHEs/Pn>ER. Projective Planes. 39 ARVESON. An Invitation to C*-Algebras. 7 SERRE. A Course in Arithmetic. 40 KEMENY/SNELLIKNAPP. Denumerable 8 T AKEUTIlZARING. Axiomatic Set Theory. Markov Chains. 2nd ed. 9 HUMPHREYS. Introduction to Lie Algebras 41 APOSTOL. Modular Functions and and Representation Theory. Dirichlet Series in Number Theory. 10 COHEN. A Course in Simple Homotopy 2nded. Theory. 42 SERRE. Linear Representations of Finite II CONWAY. Functions of One Complex Groups. Variable I. 2nd ed. 43 GILLMAN/JERISON. Rings of Continuous 12 BEALS. Advanced Mathematical Analysis. Functions. 13 ANDERSoN/FULLER. Rings and Categories 44 KENDIG. Elementary Algebraic Geometry. of Modules. 2nd ed. 45 LoEVE. Probability Theory I. 4th ed. 14 GoLUBITSKy/GUILLEMIN. Stable Mappings 46 LoEVE. Probability Theory II. 4th ed. and Their Singularities. 47 MorSE. Geometric Topology in 15 BERBERIAN. Lectures in Functional Dimensions 2 and 3. Analysis and Operator Theory. 48 SACHs/WU. General Relativity for 16 WINTER. The Structure of Fields. Mathematicians. 17 ROSENBLATT. Random Processes. 2nd ed. 49 GRUENBERGlWEIR. Linear Geometry. 18 HALMos. Measure Theory. 2nded. 19 HALMos. A Hilbert Space Problem Book. 50 EDWARDS. Fennat's Last Theorem. 2nded. 51 KLINGENBERG. A Course in Differential 20 HUSEMOLLER. Fibre Bundles. 3rd ed. Geometry. 21 HUMPHREYS. Linear Algebraic Groups. 52 HARTSHORNE. Algebraic Geometry. 22 BARNEs/MAcK. An Algebraic Introduction 53 MANIN. A Course in Mathematical Logic. to Mathematical Logic. 54 GRAVERlWATKlNS. Combinatorics with 23 GREUB. Linear Algebra. 4th ed. Emphasis on the Theory of Graphs. 24 HOLMES. Geometric Functional Analysis 55 BRoWN!PEARCY. Introduction to Operator and Its Applications. Theory I: Elements of Functional Analysis. 25 HEWITT/STROMBERG. Real and Abstract 56 MAsSEY. Algebraic Topology: An Analysis. Introduction. 26 MANEs. Algebraic Theories. 57 CRoWELLlFox. Introduction to Knot 27 l<ELLEy. General Topology. Theory. 28 ZARISKIISAMUEL. Commutative Algebra. 58 KOBLITZ. p-adic Numbers, p-adic Vol.I. Analysis, and Zeta-Functions. 2nd ed. 29 ZARIsKIlSAMUEL. Commutative Algebra. 59 LANG. Cyclotomic Fields. Vol.Il. 60 ARNOLD. Mathematical Methods in 30 JACOBSON. Lectures in Abstract Algebra I. Classical Mechanics. 2nd ed. Basic Concepts. 61 WHITEHEAD. Elements of Homotopy 31 JACOBSON. Lectures in Abstract Algebra II. Theory. Linear Algebra 62 KARGAPOLOv~AKov.Fundamenta1s 32 JACOBSON. Lectures in Abstract Algebra of the Theory of Groups. ill. Theory of Fields and Galois Theory. 63 BOLLOBAS. Graph Theory. 33 HIRsCH. Differential Topology. 64 EDWARDS. Fourier Series. Vol. I. 2nd ed. (continued after index) Jean-Pierre Escofier Galois Theory Translated by Leila Schneps With 48 Illustrations Springer Jean-Pierre Escofier Translator Institute Mathematiques de Rennes Leila Schneps Campus de Beaulieu 36 rue de ]' Orillon Universite de Rennes 1 75011 Paris 35042 Rennes Cedex France France [email protected] [email protected] Editorial Board S. Axler F.W. Gehring K.A. Ribet Mathematics Department Mathematics Department Mathematics Department San Francisco State East Hali University of California University University of Michigan at Berkeley San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840 USA USA USA Mathematics Subject Classification (2000): 11 R32, Il S20, 12F10, 13B05 Library of Congress Cataloging-in-Publieation Data Eseofier, Jean-Pierre. Galois theory / Jean-Pierre Escofier. p. em. - (Graduate texts in mathematics; 204) Includes bibliographical references and index. ISBN 978-1-4612-6558-0 ISBN 978-1-4613-0191-2 (eBook) DOI 10.1007/978-1-4613-0191-2 1. Galois theory. 1. Title. II. Series. QA174.2 .E73 2000 5 12'.3-de2 1 00-041906 Printed on acid-free paper. Translated from the Freneh Theorie de Galois, by Jean-Pierre Eseofier, first edition published by Masson, Paris, © 1997, and second edition published by Dunod, Paris, © 2000, 5, rue Laromiguiere, 75005 Paris, France. © 2001 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2001 Softcover reprint of the hardcover 1st edition 2001 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews ar scholarly analysis. Use in connection with any form of infor­ mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the forrner are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Production managed by Francine McNeill; manufacturing supervised by Joe Quatela. Photocomposed copy prepared from the translator' s TeX files. 9 8 7 654 3 2 1 ISBN 978-1-4612-6558-0 SPIN 1071 1904 Preface This book begins with a sketch, in Chapters 1 and 2, of the study of alge­ braic equations in ancient times (before the year 1600). After introducing symmetric polynomials in Chapter 3, we consider algebraic extensions of fi­ nite degree contained in the field <C of complex numbers (to remain within a familiar framework) and develop the Galois theory for these fields in Chapters 4 to 8. The fundamental theorem of Galois theory, that is, the Galois correspondence between groups and field extensions, is contained in Chapter 8. In order to give a rounded aspect to this basic introduction of Galois theory, we also provide • a digression on constructions with ruler and compass (Chapter 5), • beautiful applications (Chapters 9 and 10), and • a criterion for solvability of equations by radicals (Chapters 11 and 12). Many of the results presented here generalize easily to arbitrary fields (at least in characteristic 0), or they can be adapted to extensions of infinite degree. I could not write a book on Galois theory without some mention of the exceptional life of Evariste Galois (Chapter 13). The bibliography provides details on where to obtain further information about his life, as well as information on the moving story of Niels Abel. After these chapters, we introduce finite fields (Chapter 14) and separable extensions (Chapter 15). Chapter 16 presents two topics of current research: vi Preface firstly, the inverse Galois problem, which asks whether all finite groups occur as Galois groups of finite extensions of Q and which we treat explicitly in one very simple case, and secondly, a method for computing Galois groups that can be programmed on a computer. Most of the chapters contain exercises and problems. Some of the state­ ments are for practice, or are taken from past examinations; others suggest interesting results beyond the scope of the text. Some solutions are given completely, others are sketchy, and certain solutions that would involve mathematics beyond the scope of the text are omitted completely. Finally, this book contains a brief sketch of the history of Galois theory. I would like to thank the municipal library in Rennes for having allowed me to reproduce some fragments of its numerous treasures. The entire book was written with its student readers in mind, and with constant, careful consideration of the question of what these students will remember of it several years from now. lowe tremendous thanks to Annette Houdebine-Paugam, who helped me many times, and to Bernard Le Stum and Masson, who read the later versions of the text and suggested many corrections and alterations. Jean-Pierre Escofier May 1997 Contents Preface v 1 Historical Aspects of the Resolution of Algebraic Equations 1 1.1 Approximating the Roots of an Equation ..... 1 1.2 Construction of Solutions by Intersections of Curves 2 1.3 Relations with Trigonometry ....... 2 1.4 Problems of Notation and Terminology. 3 1.5 The Problem of Localization of the Roots 4 1.6 The Problem of the Existence of Roots. 5 1. 7 The Problem of Algebraic Solutions of Equations 6 Toward Chapter 2 ... 7 2 Resolution of Quadratic, Cubic, and Quartic Equations 9 2.1 Second-Degree Equations 9 2.1.1 The Babylonians 9 2.1.2 The Greeks . 11 2.1.3 The Arabs. 11 2.1.4 Use of Negative Numbers 12 2.2 Cubic Equations ........ 13 2.2.1 The Greeks ....... 13 2.2.2 Omar Khayyam and Sharaf ad Din at Tusi 13 2.2.3 Scipio del Ferro, Tartaglia, Cardan . 14 2.2.4 Algebraic Solution of the Cubic Equation . 15 2.2.5 First Computations with Complex Numbers. 16 2.2.6 Raffaele Bombelli ............... 17 viii Contents 2.2.7 Fran<;ois Viete . 18 2.3 Quartic Equations .. 18 Exercises for Chapter 2 19 Solutions to Some of the Exercises 22 3 Symmetric Polynomials 25 3.1 Symmetric Polynomials 25 3.1.1 Background... 25 3.1.2 Definitions ... 26 3.2 Elementary Symmetric Polynomials 27 3.2.1 Definition........... 27 3.2.2 The Product of the X - Xi; Relations Between Co- efficients and Roots .................. 27 3.3 Symmetric Polynomials and Elementary Symmetric Polyno- mials . 29 3.3.1 Theorem . 29 3.3.2 Proposition 31 3.3.3 Proposition 32 3.4 Newton's Formulas 32 3.5 Resultant of Two Polynomials .
Recommended publications
  • MATH5725 Lecture Notes∗ Typed by Charles Qin October 2007
    MATH5725 Lecture Notes∗ Typed By Charles Qin October 2007 1 Genesis Of Galois Theory Definition 1.1 (Radical Extension). A field extension K/F is radical if there is a tower of ri field extensions F = F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn = K where Fi+1 = Fi(αi), αi ∈ Fi for some + ri ∈ Z . 2 Splitting Fields Proposition-Definition 2.1 (Field Homomorphism). A map of fields σ : F −→ F 0 is a field homomorphism if it is a ring homomorphism. We also have: (i) σ is injective (ii) σ[x]: F [x] −→ F 0[x] is a ring homomorphism where n n X i X i σ[x]( fix ) = σ(fi)x i=1 i=1 Proposition 2.1. K = F [x]/hp(x)i is a field extension of F via composite ring homomor- phism F,−→ F [x] −→ F [x]/hp(x)i. Also K = F (α) where α = x + hp(x)i is a root of p(x). Proposition 2.2. Let σ : F −→ F 0 be a field isomorphism (a bijective field homomorphism). Let p(x) ∈ F [x] be irreducible. Let α and α0 be roots of p(x) and (σp)(x) respectively (in appropriate field extensions). Then there is a field extensionσ ˜ : F (α) −→ F 0(α0) such that: (i)σ ˜ extends σ, i.e.σ ˜|F = σ (ii)σ ˜(α) = α0 Definition 2.1 (Splitting Field). Let F be a field and f(x) ∈ F [x]. A field extension K/F is a splitting field for f(x) over F if: ∗The following notes were based on Dr Daniel Chan’s MATH5725 lectures in semester 2, 2007 1 (i) f(x) factors into linear polynomials over K (ii) K = F (α1, α2, .
    [Show full text]
  • Lecture Notes in Galois Theory
    Lecture Notes in Galois Theory Lectures by Dr Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review of Group Theory 1 1.1 Groups . 1 1.2 Structure of cyclic groups . 2 1.3 Permutation groups . 2 1.4 Finitely generated abelian groups . 3 1.5 Group actions . 3 Lecture 2 Group Actions and Sylow Theorems 5 2.1 p-Groups . 5 2.2 Sylow theorems . 6 Lecture 3 Review of Ring Theory 7 3.1 Rings . 7 3.2 Solutions to algebraic equations . 10 Lecture 4 Field Extensions 12 4.1 Algebraic and transcendental numbers . 12 4.2 Algebraic extensions . 13 Lecture 5 Algebraic Field Extensions 14 5.1 Minimal polynomials . 14 5.2 Composites of fields . 16 5.3 Algebraic closure . 16 Lecture 6 Algebraic Closure 17 6.1 Existence of algebraic closure . 17 Lecture 7 Field Embeddings 19 7.1 Uniqueness of algebraic closure . 19 Lecture 8 Splitting Fields 22 8.1 Lifts are not unique . 22 Notes by Jakob Streipel. Last updated December 6, 2019. i TABLE OF CONTENTS ii Lecture 9 Normal Extensions 23 9.1 Splitting fields and normal extensions . 23 Lecture 10 Separable Extension 26 10.1 Separable degree . 26 Lecture 11 Simple Extensions 26 11.1 Separable extensions . 26 11.2 Simple extensions . 29 Lecture 12 Simple Extensions, continued 30 12.1 Primitive element theorem, continued . 30 Lecture 13 Normal and Separable Closures 30 13.1 Normal closure . 31 13.2 Separable closure . 31 13.3 Finite fields .
    [Show full text]
  • Arxiv:2010.01281V1 [Math.NT] 3 Oct 2020 Extensions
    CONSTRUCTIONS USING GALOIS THEORY CLAUS FIEKER AND NICOLE SUTHERLAND Abstract. We describe algorithms to compute fixed fields, minimal degree splitting fields and towers of radical extensions using Galois group computations. We also describe the computation of geometric Galois groups and their use in computing absolute factorizations. 1. Introduction This article discusses some computational applications of Galois groups. The main Galois group algorithm we use has been previously discussed in [FK14] for number fields and [Sut15, KS21] for function fields. These papers, respectively, detail an algorithm which has no degree restrictions on input polynomials and adaptations of this algorithm for polynomials over function fields. Some of these details are reused in this paper and we will refer to the appropriate sections of the previous papers when this occurs. Prior to the development of this Galois group algorithm, there were a number of algorithms to compute Galois groups which improved on each other by increasing the degree of polynomials they could handle. The lim- itations on degree came from the use of tabulated information which is no longer necessary. Galois Theory has its beginning in the attempt to solve polynomial equa- tions by radicals. It is reasonable to expect then that we could use the computation of Galois groups for this purpose. As Galois groups are closely connected to splitting fields, it is worthwhile to consider how the computa- tion of a Galois group can aid the computation of a splitting field. In solving a polynomial by radicals we compute a splitting field consisting of a tower of radical extensions. We describe an algorithm to compute splitting fields in general as towers of extensions using the Galois group.
    [Show full text]
  • 25 Radical Extensions This Section Contains Two Classic Applications of Galois Theory
    25 Radical extensions This section contains two classic applications of Galois theory. Thefirst application, the problem of the constructibility of points in the plane raised by Greek mathematicians, shows that the underlying questions do not need to refer tofield extensions or auto- morphism groups in any way. The second application, solving polynomial equations by extracting roots, is the problem that, in a way, gave rise to Galois theory. � Construction problems In Greek mathematics,13 people used to constructfigures with a straightedge and com- pass. Here one repeatedly enlarges a given setX of at least two points in the plane by adding to it those points that can be constructed as intersections of lines and circles defined in terms of the given points. The question is, for givenX, whether certain points in the plane can be obtained fromX infinitely many construction steps. More formally, a construction step starting out from a subsetX of the plane consists of replacing the setX with the set (X) of all pointsP obtained by applying F the following algorithm: 1. Pick points a, b, c, d X witha=b andc=d. ∈ � � 2. Let� ab be either the line througha andb or the circle througha with centerb. Likewise, let� cd be either the line throughc andd or the circle throughc with centerd. 3. If� and� do not coincide, pickP � � . ab cd ∈ ab ∩ cd b a c a b d b c c d a d In order to perform step 1 of the algorithm,X needs to contain at least two points. In this case, pickingc=a andd=b shows that we haveX (X).
    [Show full text]
  • Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub
    Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub To cite this version: Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub. Unsolvability of the Quintic For- malized in Dependent Type Theory. ITP 2021 - 12th International Conference on Interactive Theorem Proving, Jun 2021, Rome / Virtual, France. hal-03136002v4 HAL Id: hal-03136002 https://hal.inria.fr/hal-03136002v4 Submitted on 2 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard Université Côte d’Azur, Inria, France Cyril Cohen  Université Côte d’Azur, Inria, France Assia Mahboubi Inria, France Vrije Universiteit Amsterdam, The Netherlands Pierre-Yves Strub École polytechnique, France Abstract In this paper, we describe an axiom-free Coq formalization that there does not exists a general method for solving by radicals polynomial equations of degree greater than 4. This development includes a proof of Galois’ Theorem of the equivalence between solvable extensions and extensions solvable by radicals. The unsolvability of the general quintic follows from applying this theorem to a well chosen polynomial with unsolvable Galois group.
    [Show full text]
  • Galois Theory and the Insolvability of the Quintic Equation Daniel Franz
    Galois Theory and the Insolvability of the Quintic Equation Daniel Franz 1. Introduction Polynomial equations and their solutions have long fascinated math- ematicians. The solution to the general quadratic polynomial ax2 + bx + c = 0 is the well known quadratic formula: p −b ± b2 − 4ac x = : 2a This solution was known by the ancient Greeks and solutions to gen- eral cubic and quartic equations were discovered in the 16th century. The important property of all these solutions is that they are solu- tions \by radicals"; that is, x can be calculated by performing only elementary operations and taking roots. After solutions by radicals were discovered for cubic and quartic equations, it was assumed that such solutions could be found polynomials of degree n for any natu- ral number n. The next obvious step then was to find a solution by radicals to the general fifth degree polynomial, the quintic equation. The answer to this problem continued to elude mathematicians until, in 1824, Niels Abel showed that there existed quintics which did not have a solution by radicals. During the time Abel was working in Nor- way on this problem, in the early 18th century, Evariste Galois was also investigating solutions to polynomials in France. Galois, who died at the age of 20 in 1832 in a duel, studied the permutations of the roots of a polynomial, and used the structure of this group of permuta- tions to determine when the roots could be solved in terms of radicals; such groups are called solvable groups. In the course of his work, he became the first mathematician to use the word \group" and defined a normal subgroup.
    [Show full text]
  • Radical Extensions and Galois Groups
    Radical extensions and Galois groups een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de Rector Magni¯cus prof. dr. C.W.P.M. Blom, volgens besluit van het College van Decanen in het openbaar te verdedigen op dinsdag 17 mei 2005 des namiddags om 3.30 uur precies door Mascha Honsbeek geboren op 25 oktober 1971 te Haarlem Promotor: prof. dr. F.J. Keune Copromotores: dr. W. Bosma dr. B. de Smit (Universiteit Leiden) Manuscriptcommissie: prof. dr. F. Beukers (Universiteit Utrecht) prof. dr. A.M. Cohen (Technische Universiteit Eindhoven) prof. dr. H.W. Lenstra (Universiteit Leiden) Dankwoord Zoals iedereen aan mijn cv kan zien, is het schrijven van dit proefschrift niet helemaal volgens schema gegaan. De eerste drie jaar wilde het niet echt lukken om resultaten te krijgen. Toch heb ik in die tijd heel ¯jn samengewerkt met Frans Keune en Wieb Bosma. Al klopte ik drie keer per dag aan de deur, steeds maakten ze de tijd voor mij. Frans en Wieb, dank je voor jullie vriendschap en begeleiding. Op het moment dat ik dacht dat ik het schrijven van een proefschrift misschien maar op moest geven, kwam ik in contact met Bart de Smit. Hij keek net een beetje anders tegen de wiskunde waarmee ik bezig was aan en hielp me daarmee weer op weg. Samen met Hendrik Lenstra kwam hij met het voorstel voor het onderzoek dat ik heb uitgewerkt in het eerste hoofdstuk, de kern van dit proefschrift.
    [Show full text]
  • FIELD THEORY Contents 1. Algebraic Extensions 1 1.1. Finite And
    FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions 10 1.6. Finite Fields 13 2. Galois Theory 14 2.1. Galois Extensions 14 2.2. Examples and Applications 17 2.3. Roots of Unity 20 2.4. Linear Independence of Characters 23 2.5. Norm and Trace 24 2.6. Cyclic Extensions 25 2.7. Solvable and Radical Extensions 26 Index 28 1. Algebraic Extensions 1.1. Finite and Algebraic Extensions. Definition 1.1.1. Let 1F be the multiplicative unity of the field F . Pn (1) If i=1 1F 6= 0 for any positive integer n, we say that F has characteristic 0. Pp (2) Otherwise, if p is the smallest positive integer such that i=1 1F = 0, then F has characteristic p. (In this case, p is necessarily prime.) (3) We denote the characteristic of the field by char(F ). 1 2 MATH 552 (4) The prime field of F is the smallest subfield of F . (Thus, if char(F ) = p > 0, def then the prime field of F is Fp = Z/pZ (the filed with p elements) and if char(F ) = 0, then the prime field of F is Q.) (5) If F and K are fields with F ⊆ K, we say that K is an extension of F and we write K/F . F is called the base field. def (6) The degree of K/F , denoted by [K : F ] = dimF K, i.e., the dimension of K as a vector space over F .
    [Show full text]
  • Galois Theory: Fifth-Degree Polynomials and Some Ruler-And- Compass Problems
    GALOIS THEORY: FIFTH-DEGREE POLYNOMIALS AND SOME RULER-AND- COMPASS PROBLEMS Gabriel J. Loehr M379H TC660H Dean’s Scholars Honors Program Plan II Honors Program Department of Mathematics University of Texas at Austin May 4, 2020 __________________ ________ __________________ ________ Altha B. Rodin Date David Rusin Date Supervising Professor Honors Advisor in Mathematics Abstract Evariste´ Galois was a French mathematician in the beginning of the 19th century. Unfortunately, his story is a tragic one. Unappreciated by his contemporaries, he struggled to gain recognition for his work and was denied entry into the top Parisian University to study math. Rel- egated to a second-tier school and feeling like he would never succeed, he lost his life in a duel at the age of 20. However, the night before his duel, he scribbled notes furiously and sketched out a solution to a central problem in mathematics. It would take more than a decade for his work to come to light, but he had actually managed to prove the non-existence of a general radical solution for fifth-order polynomial equations, a problem that had plagued mathematicians for centuries. Perhaps the most beautiful part of his work was its success in demonstrating the unity of different fields of math. His solution an- swered three seemingly unrelated problems in geometry that had re- mained unsolved since the time of the ancient Greeks: the duplication of the cube, trisection of the angle, and quadrature of the circle, which asked respectively for a cube whose volume is twice the volume of a given cube, an angle one-third the size of a given angle, and a square of area equal to the area of a given circle.
    [Show full text]
  • On the Algebraic Theory of Fields
    Lectures on the Algebraic Theory of Fields By K.G. Ramanathan Tata Institute of Fundamental Research, Bombay 1956 Lectures on the Algebraic Theory of Fields By K.G. Ramanathan Tata Institute of Fundamental Research, Bombay 1954 Introduction There are notes of course of lectures on Field theory aimed at pro- viding the beginner with an introduction to algebraic extensions, alge- braic function fields, formally real fields and valuated fields. These lec- tures were preceded by an elementary course on group theory, vector spaces and ideal theory of rings—especially of Noetherian rings. A knowledge of these is presupposed in these notes. In addition, we as- sume a familiarity with the elementary topology of topological groups and of the real and complex number fields. Most of the material of these notes is to be found in the notes of Artin and the books of Artin, Bourbaki, Pickert and Van-der-Waerden. My thanks are due to Mr. S. Raghavan for his help in the writing of these notes. K.G. Ramanathan Contents 1 General extension fields 1 1 Extensions......................... 1 2 Adjunctions........................ 3 3 Algebraic extensions . 5 4 Algebraic Closure . 9 5 Transcendental extensions . 12 2 Algebraic extension fields 17 1 Conjugate elements . 17 2 Normal extensions . 18 3 Isomorphisms of fields . 21 4 Separability ........................ 24 5 Perfectfields ....................... 31 6 Simple extensions . 35 7 Galois extensions . 38 8 Finitefields ........................ 46 3 Algebraic function fields 49 1 F.K. Schmidt’s theorem . 49 2 Derivations ........................ 54 3 Rational function fields . 67 4 Norm and Trace 75 1 Normandtrace ...................... 75 2 Discriminant ....................... 82 v vi Contents 5 Composite extensions 87 1 Kronecker product of Vector spaces .
    [Show full text]
  • Galois Theory
    Chapter 7 Galois Theory Galois theory is named after the French mathematician Evariste Galois. Galois was born in 1811, and had what could be called the life of a misun- derstood genius. At the age of 15, he was already reading material written for professional mathematicians. He took the examination to the “Ecole Polytech- nique” to study mathematics but failed and entered the “Ecole Normale” in 1828. He wrote his first paper at the age of 18. He tried to advertise his work, and sent his discoveries in the theory of polynomial equations to the Academy of Sciences, where Cauchy rejected his memoir. He did not get discouraged, and in 1830, he wrote again his researches to the Academy of Sciences, where this time Fourier got his manuscript. However, Fourier died before reading it. A year later, he made a third attempt, and sent to the Academy of Sciences a memoir called “On the conditions of solvability of equations by radicals”. Poisson was a referee, and he answered several months later, declaring the paper incomprehensible. In 1832, he got involved in a love affair, but got rejected due to a rival, who challenged him to a duel. The night before the duel, he wrote a letter to his friend, where he reported his mathematical discoveries. He died during the duel with pistols in 1832. It is after his death that his friend insisted to have his letter published, which was finally done by the mathematician Chevalier. 7.1 Galois group and fixed fields Definition 7.1. If E/F is normal and separable, it is said to be a Galois extension, or alternatively, we say that E is Galois over F .
    [Show full text]
  • Project Example 1: Topics in Galois Theory
    A Project Example 1: Topics in Galois Theory Preamble For this project, the student explored an area of mathematics that was outside the course, and was difficult. The information was available and well embedded in the literature: however the concepts were advanced. In style therefore, this project most closely resembles the Hypergeometric Functions project outlined in Section 3.7. Abstract Galois Theory was originally formulated to determine whether the roots of a rational polynomial could be expressed in radicals. The theory is based on the association of a group to each polynomial and the analysis of the group to determine solubility in terms of radicals. We first study Galois Theory with the approach of the author Evariste Galois, then in its modern form based on abstract algebra, particularly field theory, which allows a more general interpre- tation. We then outline the theory of soluble groups and give some examples. Finally, we consider the application of methods in Galois Theory to the three classical construction problems and the construction of n-gons. 151 152 Managing Mathematical Projects - With Success! Introduction Evariste Galois (1811–1832) was a French mathematician who was born near Paris. Although he died in tragic circumstances at 20 years old he had already produced work that would make him famous. Unfortunately during his lifetime Galois suffered many setbacks and was considered to be a troublemaker by the government. He also found himself unaccepted by the mathematical establish- ment. It was not until 1846 that Joseph Liouville published some of Galois’ work in his Journal de Mathematiques [ED, p1].
    [Show full text]