Galois Theory

Total Page:16

File Type:pdf, Size:1020Kb

Galois Theory Galois Theory Richard Koch September 12, 2021 Contents Preface 4 1 Arnold's Proof of the Abel-Ruffini Theorem 18 2 Finite Group Theory 25 2.1 The Extension Problem; Simple Groups.................... 25 2.2 An Isomorphism Lemma............................. 26 2.3 Jordan-Holder................................... 27 2.4 The Symmetric and Alternating Groups.................... 29 3 The Quadratic, Cubic, and Quartic Formulas 32 3.1 The Quadratic Formula............................. 32 3.2 The Cubic Formula................................ 33 3.3 The Quartic Formula............................... 38 4 Field Extensions and Root Fields 40 4.1 Motivation for Field Theory........................... 40 4.2 Fields....................................... 42 4.3 An Important Example............................. 43 4.4 Extension Fields................................. 43 4.5 Algebraic Extensions; Root Fields....................... 44 4.6 Irreducible Polynomials over Q ......................... 45 4.7 The Degree of a Field Extension........................ 47 4.8 Existence of Root Fields............................. 48 4.9 Isomorphism and Uniqueness.......................... 50 4.10 Putting It All Together............................. 50 5 Splitting Fields 52 5.1 Factoring P .................................... 52 5.2 The Splitting Field................................ 52 1 CONTENTS 2 5.3 Proof that Splitting Fields Are Unique..................... 54 5.4 Uniqueness of Splitting Fields, and P (X) = X3 − 2.............. 56 6 Finite Fields 59 6.1 Finite Fields................................... 59 7 Beginning Galois Theory 61 7.1 Motivation for Galois Theory.......................... 61 7.2 Motivation; Putting the Ideas Together.................... 64 7.3 The Galois Group................................ 65 8 Galois Extensions and the Fundamental Theorem 67 8.1 Galois Extensions................................. 67 8.2 Fundamental Theorem of Galois Theory.................... 70 8.3 Important Note.................................. 72 8.4 An Example.................................... 72 8.5 Finite Fields Again................................ 72 9 Concrete Cases of the Theory 74 9.1 Cyclotomic Fields................................. 74 9.2 Galois Group of a Radical Extension...................... 75 9.3 Structure of Extensions with Cyclic Galois Group............... 75 10 Solving Polynomials by Radicals 77 10.1 Solving Polynomial Equations with Radicals.................. 77 10.2 The Flaw..................................... 78 10.3 The Fix...................................... 79 10.4 Galois' Theorem on Solving Via Radicals................... 80 10.5 Solving Generic Equations by Radicals..................... 82 10.6 A Polynomial Equation Which Cannot Be Solved by Radicals........ 84 11 Straightedge and Compass Constructions 87 11.1 Constructions With Straightedge and Compass................ 87 11.2 Complex Extensions and Constructions.................... 91 11.3 Trisecting Angles; Doubling the Cube..................... 92 12 Irrationality and Transcendence of π and e 94 12.1 Irrationality e and π ............................... 94 12.2 Transcendence of e ................................ 96 12.3 Intermission: Fundamental Theorem of Symmetric Polynomials....... 98 12.4 Transcendence of π ............................... 99 CONTENTS 3 13 Special Cases 102 13.1 The Discriminant................................. 102 13.2 The Cubic Case.................................. 103 13.3 Cyclotomic Fields................................. 105 13.4 Galois Group of Xp − a over Q ......................... 109 14 Constructing Regular Polygons 111 14.1 Constructing Regular Polygons......................... 111 15 Normal and Separable Extensions 115 15.1 Normal Extensions, Separable Extensions, and All That........... 115 16 Galois Theory and Reduction Modulo p 120 16.1 Preview...................................... 120 16.2 X5 − X − 1.................................... 121 16.3 A Tricky Point Concerning Straightedge and Compass Constructions.... 122 16.4 Polynomials with Galois Group Sn ....................... 124 16.5 Every Finite G is a Galois Group........................ 125 16.6 Proof of Dedekind's Theorem.......................... 125 Preface The beginnings of algebra, and the discovery of the quadratic formula, are hidden in the mists of time. At first, algebra was written entirely with words: \the thing plus oneequals two." This \rhetorical algebra" was created in Babylonia and lasted until the early fifteenth century. Diophantus may have been the first person to use symbols for some of these words, in a book named Arithmetica written around 200 AD. Algebra was extensively developed by Arabic mathematicians starting around 700 AD, eventually giving the subject its name. The modern symbolic approach begins to appear in full dress in the works of Francois Viete toward the end of the 1500's and Rene Descartes' La Geometrie of 1637. Signs of quadratic equations appear early in this long development, but it is difficult to pick a particular moment that the quadratic formula appears in the precise form we use today. Perhaps it is better to say that it has been a part of the subject for many centuries. Cubic equations appear very early in this history, even in Babylonian times. By the 1500's, with the quadratic formula in its modern form, mathematicians began searching for an analogous cubic formula. The first glimpse of the formula was seen by Scipione del Ferro around 1500, but he did not publish the result, which was found in his mathematical papers after his death. The formula was rediscovered by Niccol Tartaglia in 1530, and used by him in a mathematical contest against del Ferro's son-in-law, who had discovered the formula in del Ferro's papers. Later Tartaglia revealed the formula to Gerolamo Cardano, on condition that he not reveal the formula until Tartaglia published it. Cardano generally kept his word, but he did reveal the formula to an apprentice named Lodovico Ferrari, who used it to produce a formula for solving quartic equations. This put Cardano in a bind, since Tartaglia did not publish and Ferrari could not show his solution without revealing the cubic formula. Eventually Cardano recalled the ancient contest of Tartaglia and del Ferro's son-in-law, and visited del Ferro's widow, who turned out to have kept her husband room intact since his death. There Cardano found del Ferro's solution, and published it while claiming not to break his oath to Tartaglia. All of this is covered in much greater detail in the wonderful book Cardano, the Gambling Scholar by Oystein Ore. The quadratic formula can be obtained by introducing a new variable y = x+λ and writing 4 CONTENTS 5 the quadratic in terms of y rather than x. Geometrically, this amounts to translating the graph of the quadratic by λ. If λ is chosen appropriately, the linear term in the equation for y cancels out and we obtain y2 + A = 0, which is easily solved. The same trick words for cubic equations, reducing an arbitrary cubic to the form x3 + Ax + B = 0 The cubic formula states that x is then equal to s r s r 3 B B2 A3 3 B B2 A3 x = − + + + − − + 2 4 27 2 4 27 This formula has some unexpected properties. If A and B are real, the cubic either has one real root or three real roots, except for trivial edge cases. If it has one real root, the expression under the square root is positive and then the formula gives the real root since any real number has a real cube root. But if there are three real roots, the expression under the square root is negative. This suggests that a separate formula may be required to handle the case of three real roots. In 1572, Bombelli published L'Algebra. In this book he advanced algebraic notation and added many examples from Diophantus after becoming one of the first modern Europeans to rediscover this book. But Bombelli is mainly remembered today for a specific example in his book, the solution of the cubic equation x3 − 15x − 4 = 0. He obtains x = 4, which can be easily checked. It is his method which is significant, for he obtains this root from the cubic formula. According to the formula, q p q p p p x = 3 2 + −121 + 3 2 − −121 = 3 2 + 11i + 3 2 − 11i Bombelli then notices that (2 + i)3 = 2 + 11i and (2 − i)3 = 2 − 11i and thus x = (2 + i) + (2 − i) = 4 Before this book appeared, complex numbers were not taken seriously, and it is their use in the cubic formula which gave mathematicians the first glimpse of their importance. Later mathematicians computed complex cube roots using trigonometry and then the cubic formula could solve all cubic equations. Incidentally, we will later prove that cubic equations with three real roots cannot be solved using only real radicals, so the cubic formula is the only game in town. After Ferrari found a quartic formula, mathematicians tried to find formulas for higher degree equations. In the late 1700's, this work was taken on by Lagrange (who also created the metric system during the French Revolution). Lagrange created various linear combi- nations of the roots, called resolvents, and found that each satisfied a polynomial equation CONTENTS 6 called its resolvent equation. Finding the resolvent by solving this equation often led to a complete solution of the original equation. In the quadratic, cubic, and quartic cases, resolvents exist whose resolvent equations have lower degree than the original equation, so there is a general inductive procedure to solve these equations. However, Lagrange was unable to find a general resolvent
Recommended publications
  • APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
    CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e.
    [Show full text]
  • MATH5725 Lecture Notes∗ Typed by Charles Qin October 2007
    MATH5725 Lecture Notes∗ Typed By Charles Qin October 2007 1 Genesis Of Galois Theory Definition 1.1 (Radical Extension). A field extension K/F is radical if there is a tower of ri field extensions F = F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn = K where Fi+1 = Fi(αi), αi ∈ Fi for some + ri ∈ Z . 2 Splitting Fields Proposition-Definition 2.1 (Field Homomorphism). A map of fields σ : F −→ F 0 is a field homomorphism if it is a ring homomorphism. We also have: (i) σ is injective (ii) σ[x]: F [x] −→ F 0[x] is a ring homomorphism where n n X i X i σ[x]( fix ) = σ(fi)x i=1 i=1 Proposition 2.1. K = F [x]/hp(x)i is a field extension of F via composite ring homomor- phism F,−→ F [x] −→ F [x]/hp(x)i. Also K = F (α) where α = x + hp(x)i is a root of p(x). Proposition 2.2. Let σ : F −→ F 0 be a field isomorphism (a bijective field homomorphism). Let p(x) ∈ F [x] be irreducible. Let α and α0 be roots of p(x) and (σp)(x) respectively (in appropriate field extensions). Then there is a field extensionσ ˜ : F (α) −→ F 0(α0) such that: (i)σ ˜ extends σ, i.e.σ ˜|F = σ (ii)σ ˜(α) = α0 Definition 2.1 (Splitting Field). Let F be a field and f(x) ∈ F [x]. A field extension K/F is a splitting field for f(x) over F if: ∗The following notes were based on Dr Daniel Chan’s MATH5725 lectures in semester 2, 2007 1 (i) f(x) factors into linear polynomials over K (ii) K = F (α1, α2, .
    [Show full text]
  • Solving Solvable Quintics
    mathematics of computation volume 57,number 195 july 1991, pages 387-401 SOLVINGSOLVABLE QUINTICS D. S. DUMMIT Abstract. Let f{x) = x 5 +px 3 +qx 2 +rx + s be an irreducible polynomial of degree 5 with rational coefficients. An explicit resolvent sextic is constructed which has a rational root if and only if f(x) is solvable by radicals (i.e., when its Galois group is contained in the Frobenius group F20 of order 20 in the symmetric group S5). When f(x) is solvable by radicals, formulas for the roots are given in terms of p, q, r, s which produce the roots in a cyclic order. 1. Introduction It is well known that an irreducible quintic with coefficients in the rational numbers Q is solvable by radicals if and only if its Galois group is contained in the Frobenius group F20 of order 20, i.e., if and only if the Galois group is isomorphic to F20 , to the dihedral group DXQof order 10, or to the cyclic group Z/5Z. (More generally, for any prime p, it is easy to see that a solvable subgroup of the symmetric group S whose order is divisible by p is contained in the normalizer of a Sylow p-subgroup of S , cf. [1].) The purpose here is to give a criterion for the solvability of such a general quintic in terms of the existence of a rational root of an explicit associated resolvent sextic polynomial, and when this is the case, to give formulas for the roots analogous to Cardano's formulas for the general cubic and quartic polynomials (cf.
    [Show full text]
  • Lecture Notes in Galois Theory
    Lecture Notes in Galois Theory Lectures by Dr Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review of Group Theory 1 1.1 Groups . 1 1.2 Structure of cyclic groups . 2 1.3 Permutation groups . 2 1.4 Finitely generated abelian groups . 3 1.5 Group actions . 3 Lecture 2 Group Actions and Sylow Theorems 5 2.1 p-Groups . 5 2.2 Sylow theorems . 6 Lecture 3 Review of Ring Theory 7 3.1 Rings . 7 3.2 Solutions to algebraic equations . 10 Lecture 4 Field Extensions 12 4.1 Algebraic and transcendental numbers . 12 4.2 Algebraic extensions . 13 Lecture 5 Algebraic Field Extensions 14 5.1 Minimal polynomials . 14 5.2 Composites of fields . 16 5.3 Algebraic closure . 16 Lecture 6 Algebraic Closure 17 6.1 Existence of algebraic closure . 17 Lecture 7 Field Embeddings 19 7.1 Uniqueness of algebraic closure . 19 Lecture 8 Splitting Fields 22 8.1 Lifts are not unique . 22 Notes by Jakob Streipel. Last updated December 6, 2019. i TABLE OF CONTENTS ii Lecture 9 Normal Extensions 23 9.1 Splitting fields and normal extensions . 23 Lecture 10 Separable Extension 26 10.1 Separable degree . 26 Lecture 11 Simple Extensions 26 11.1 Separable extensions . 26 11.2 Simple extensions . 29 Lecture 12 Simple Extensions, continued 30 12.1 Primitive element theorem, continued . 30 Lecture 13 Normal and Separable Closures 30 13.1 Normal closure . 31 13.2 Separable closure . 31 13.3 Finite fields .
    [Show full text]
  • Determining the Galois Group of a Rational Polynomial
    Determining the Galois group of a rational polynomial Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523 [email protected] http://www.math.colostate.edu/˜hulpke JAH 1 The Task Let f Q[x] be an irreducible polynomial of degree n. 2 Then G = Gal(f) = Gal(L; Q) with L the splitting field of f over Q. Problem: Given f, determine G. WLOG: f monic, integer coefficients. JAH 2 Field Automorphisms If we want to represent automorphims explicitly, we have to represent the splitting field L For example as splitting field of a polynomial g Q[x]. 2 The factors of g over L correspond to the elements of G. Note: If deg(f) = n then deg(g) n!. ≤ In practice this degree is too big. JAH 3 Permutation type of the Galois Group Gal(f) permutes the roots α1; : : : ; αn of f: faithfully (L = Spl(f) = Q(α ; α ; : : : ; α ). • 1 2 n transitively ( (x α ) is a factor of f). • Y − i i I 2 This action gives an embedding G S . The field Q(α ) corresponds ≤ n 1 to the subgroup StabG(1). Arrangement of roots corresponds to conjugacy in Sn. We want to determine the Sn-class of G. JAH 4 Assumption We can calculate “everything” about Sn. n is small (n 20) • ≤ Can use table of transitive groups (classified up to degree 30) • We can approximate the roots of f (numerically and p-adically) JAH 5 Reduction at a prime Let p be a prime that does not divide the discriminant of f (i.e.
    [Show full text]
  • Casus Irreducibilis and Maple
    48 Casus irreducibilis and Maple Rudolf V´yborn´y Abstract We give a proof that there is no formula which uses only addition, multiplication and extraction of real roots on the coefficients of an irreducible cubic equation with three real roots that would provide a solution. 1 Introduction The Cardano formulae for the roots of a cubic equation with real coefficients and three real roots give the solution in a rather complicated form involving complex numbers. Any effort to simplify it is doomed to failure; trying to get rid of complex numbers leads back to the original equation. For this reason, this case of a cubic is called casus irreducibilis: the irreducible case. The usual proof uses the Galois theory [3]. Here we give a fairly simple proof which perhaps is not quite elementary but should be accessible to undergraduates. It is well known that a convenient solution for a cubic with real roots is in terms of trigono- metric functions. In the last section we handle the irreducible case in Maple and obtain the trigonometric solution. 2 Prerequisites By N, Q, R and C we denote the natural numbers, the rationals, the reals and the com- plex numbers, respectively. If F is a field then F [X] denotes the ring of polynomials with coefficients in F . If F ⊂ C is a field, a ∈ C but a∈ / F then there exists a smallest field of complex numbers which contains both F and a, we denote it by F (a). Obviously it is the intersection of all fields which contain F as well as a.
    [Show full text]
  • ON R-EXTENSIONS of ALGEBRAIC NUMBER FIELDS Let P Be a Prime
    ON r-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS KENKICHI IWASAWA1 Let p be a prime number. We call a Galois extension L of a field K a T-extension when its Galois group is topologically isomorphic with the additive group of £-adic integers. The purpose of the present paper is to study arithmetic properties of such a T-extension L over a finite algebraic number field K. We consider, namely, the maximal unramified abelian ^-extension M over L and study the structure of the Galois group G(M/L) of the extension M/L. Using the result thus obtained for the group G(M/L)> we then define two invariants l(L/K) and m(L/K)} and show that these invariants can be also de­ termined from a simple formula which gives the exponents of the ^-powers in the class numbers of the intermediate fields of K and L. Thus, giving a relation between the structure of the Galois group of M/L and the class numbers of the subfields of L, our result may be regarded, in a sense, as an analogue, for L, of the well-known theorem in classical class field theory which states that the class number of a finite algebraic number field is equal to the degree of the maximal unramified abelian extension over that field. An outline of the paper is as follows: in §1—§5, we study the struc­ ture of what we call T-finite modules and find, in particular, invari­ ants of such modules which are similar to the invariants of finite abelian groups.
    [Show full text]
  • Techniques for the Computation of Galois Groups
    Techniques for the Computation of Galois Groups Alexander Hulpke School of Mathematical and Computational Sciences, The University of St. Andrews, The North Haugh, St. Andrews, Fife KY16 9SS, United Kingdom [email protected] Abstract. This note surveys recent developments in the problem of computing Galois groups. Galois theory stands at the cradle of modern algebra and interacts with many areas of mathematics. The problem of determining Galois groups therefore is of interest not only from the point of view of number theory (for example see the article [39] in this volume), but leads to many questions in other areas of mathematics. An example is its application in computer algebra when simplifying radical expressions [32]. Not surprisingly, this task has been considered in works from number theory, group theory and algebraic geometry. In this note I shall give an overview of methods currently used. While the techniques used for the identification of Galois groups were known already in the last century [26], the involved calculations made it almost imprac- tical to do computations beyond trivial examples. Thus the problem was only taken up again in the last 25 years with the advent of computers. In this note we will restrict ourselves to the case of the base field Q. Most methods generalize to other fields like Q(t), Qp, IFp(t) or number fields. The results presented here are the work of many mathematicians. I tried to give credit by references wherever possible. 1 Introduction We are given an irreducible polynomial f Q[x] of degree n and asked to determine the Galois group of its splitting field2 L = Spl(f).
    [Show full text]
  • Arxiv:2010.01281V1 [Math.NT] 3 Oct 2020 Extensions
    CONSTRUCTIONS USING GALOIS THEORY CLAUS FIEKER AND NICOLE SUTHERLAND Abstract. We describe algorithms to compute fixed fields, minimal degree splitting fields and towers of radical extensions using Galois group computations. We also describe the computation of geometric Galois groups and their use in computing absolute factorizations. 1. Introduction This article discusses some computational applications of Galois groups. The main Galois group algorithm we use has been previously discussed in [FK14] for number fields and [Sut15, KS21] for function fields. These papers, respectively, detail an algorithm which has no degree restrictions on input polynomials and adaptations of this algorithm for polynomials over function fields. Some of these details are reused in this paper and we will refer to the appropriate sections of the previous papers when this occurs. Prior to the development of this Galois group algorithm, there were a number of algorithms to compute Galois groups which improved on each other by increasing the degree of polynomials they could handle. The lim- itations on degree came from the use of tabulated information which is no longer necessary. Galois Theory has its beginning in the attempt to solve polynomial equa- tions by radicals. It is reasonable to expect then that we could use the computation of Galois groups for this purpose. As Galois groups are closely connected to splitting fields, it is worthwhile to consider how the computa- tion of a Galois group can aid the computation of a splitting field. In solving a polynomial by radicals we compute a splitting field consisting of a tower of radical extensions. We describe an algorithm to compute splitting fields in general as towers of extensions using the Galois group.
    [Show full text]
  • Graduate Texts in Mathematics 204
    Graduate Texts in Mathematics 204 Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer Science+Business Media, LLC Graduate Texts in Mathematics TAKEUTIlZARING.lntroduction to 34 SPITZER. Principles of Random Walk. Axiomatic Set Theory. 2nd ed. 2nded. 2 OxrOBY. Measure and Category. 2nd ed. 35 Al.ExANDERIWERMER. Several Complex 3 SCHAEFER. Topological Vector Spaces. Variables and Banach Algebras. 3rd ed. 2nded. 36 l<ELLEyINAMIOKA et al. Linear Topological 4 HILTON/STAMMBACH. A Course in Spaces. Homological Algebra. 2nd ed. 37 MONK. Mathematical Logic. 5 MAc LANE. Categories for the Working 38 GRAUERT/FRlTZSCHE. Several Complex Mathematician. 2nd ed. Variables. 6 HUGHEs/Pn>ER. Projective Planes. 39 ARVESON. An Invitation to C*-Algebras. 7 SERRE. A Course in Arithmetic. 40 KEMENY/SNELLIKNAPP. Denumerable 8 T AKEUTIlZARING. Axiomatic Set Theory. Markov Chains. 2nd ed. 9 HUMPHREYS. Introduction to Lie Algebras 41 APOSTOL. Modular Functions and and Representation Theory. Dirichlet Series in Number Theory. 10 COHEN. A Course in Simple Homotopy 2nded. Theory. 42 SERRE. Linear Representations of Finite II CONWAY. Functions of One Complex Groups. Variable I. 2nd ed. 43 GILLMAN/JERISON. Rings of Continuous 12 BEALS. Advanced Mathematical Analysis. Functions. 13 ANDERSoN/FULLER. Rings and Categories 44 KENDIG. Elementary Algebraic Geometry. of Modules. 2nd ed. 45 LoEVE. Probability Theory I. 4th ed. 14 GoLUBITSKy/GUILLEMIN. Stable Mappings 46 LoEVE. Probability Theory II. 4th ed. and Their Singularities. 47 MorSE. Geometric Topology in 15 BERBERIAN. Lectures in Functional Dimensions 2 and 3. Analysis and Operator Theory. 48 SACHs/WU. General Relativity for 16 WINTER. The Structure of Fields. Mathematicians. 17 ROSENBLATT.
    [Show full text]
  • Theory of Equations
    CHAPTER I - THEORY OF EQUATIONS DEFINITION 1 A function defined by n n-1 f ( x ) = p 0 x + p 1 x + ... + p n-1 x + p n where p 0 ≠ 0, n is a positive integer or zero and p i ( i = 0,1,2...,n) are fixed complex numbers, is called a polynomial function of degree n in the indeterminate x . A complex number a is called a zero of a polynomial f ( x ) if f (a ) = 0. Theorem 1 – Fundamental Theorem of Algebra Every polynomial function of degree greater than or equal to 1 has atleast one zero. Definition 2 n n-1 Let f ( x ) = p 0 x + p 1 x + ... + p n-1 x + p n where p 0 ≠ 0, n is a positive integer . Then f ( x ) = 0 is a polynomial equation of nth degree. Definition 3 A complex number a is called a root ( solution) of a polynomial equation f (x) = 0 if f ( a) = 0. THEOREM 2 – DIVISION ALGORITHM FOR POLYNOMIAL FUNCTIONS If f(x) and g( x ) are two polynomial functions with degree of g(x) is greater than or equal to 1 , then there are unique polynomials q ( x) and r (x ) , called respectively quotient and reminder , such that f (x ) = g (x) q(x) + r (x) with the degree of r (x) less than the degree of g (x). Theorem 3- Reminder Theorem If f (x) is a polynomial , then f(a ) is the remainder when f(x) is divided by x – a . Theorem 4 Every polynomial equation of degree n ≥ 1 has exactly n roots.
    [Show full text]
  • Galois Groups of Cubics and Quartics (Not in Characteristic 2)
    GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over fields not of characteristic 2. This does not include explicit formulas for the roots, i.e., we are not going to derive the classical cubic and quartic formulas. 1. Review Let K be a field and f(X) be a separable polynomial in K[X]. The Galois group of f(X) over K permutes the roots of f(X) in a splitting field, and labeling the roots as r1; : : : ; rn provides an embedding of the Galois group into Sn. We recall without proof two theorems about this embedding. Theorem 1.1. Let f(X) 2 K[X] be a separable polynomial of degree n. (a) If f(X) is irreducible in K[X] then its Galois group over K has order divisible by n. (b) The polynomial f(X) is irreducible in K[X] if and only if its Galois group over K is a transitive subgroup of Sn. Definition 1.2. If f(X) 2 K[X] factors in a splitting field as f(X) = c(X − r1) ··· (X − rn); the discriminant of f(X) is defined to be Y 2 disc f = (rj − ri) : i<j In degree 3 and 4, explicit formulas for discriminants of some monic polynomials are (1.1) disc(X3 + aX + b) = −4a3 − 27b2; disc(X4 + aX + b) = −27a4 + 256b3; disc(X4 + aX2 + b) = 16b(a2 − 4b)2: Theorem 1.3.
    [Show full text]