Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub
Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub To cite this version: Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub. Unsolvability of the Quintic For- malized in Dependent Type Theory. ITP 2021 - 12th International Conference on Interactive Theorem Proving, Jun 2021, Rome / Virtual, France. hal-03136002v4 HAL Id: hal-03136002 https://hal.inria.fr/hal-03136002v4 Submitted on 2 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unsolvability of the Quintic Formalized in Dependent Type Theory Sophie Bernard Université Côte d’Azur, Inria, France Cyril Cohen  Université Côte d’Azur, Inria, France Assia Mahboubi Inria, France Vrije Universiteit Amsterdam, The Netherlands Pierre-Yves Strub École polytechnique, France Abstract In this paper, we describe an axiom-free Coq formalization that there does not exists a general method for solving by radicals polynomial equations of degree greater than 4. This development includes a proof of Galois’ Theorem of the equivalence between solvable extensions and extensions solvable by radicals. The unsolvability of the general quintic follows from applying this theorem to a well chosen polynomial with unsolvable Galois group.
[Show full text]