Smart Charging of Future Electric Vehicles Using Roadway Infrastructure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Roadway Design Concept
Mediterranean Institute for Regional Studies – MIRS www.mirs.co Policy Paper, No 5 Investigation and Feasibility Study to Replace Asphalt Roadway into Solare Roadway Prepared by: Dllshad Mwani Senior fellow and coordinator at MIRS Iraq- Kurdistan Region- Sulaymanyah *** Mediterranean Institute for Regional Studies II Investigation and Feasibility Study to Replace Asphalt Roadway into Solare Roadway By: Dilshad Mwani Contact us Email: [email protected] Official website: www.mirs.co Tel: 00 (964)7701951736 00(90)5338601514 Facebook: https://www.facebook.com/mirs.english/ Twitter: https://twitter.com/MIRSEnglish About Author : He is an expert on Managing oil and gas sector, He has an M.A in Oil and Gas Management at Birmingham City University. He is also a senior fellow and Coordinator MIRS. III Abstract Sustainability is critical in current engineering designs, especially in the area of pavement engineering, and is founded on having only limited resources while attempting to maximize designs for operation. To this end, developing infrastructure that can meet multiple needs is highly beneficial to society’s will to live at our current standard of living. One such task is the proposition to build roads that have been integrated with photovoltaic cells in order to supply a high performance driving surface while generating renewable electricity. This electricity could then be used by local infrastructure, adjacent buildings, or sold to the electrical grid. In order law to do this there are many challenges that necessitate to be overcome, as these roads cannot be built from traditional road surface materials, and a thorough analysis of many design aspects needs to be seen. -
Conference Programme ORAL PRESENTATIONS 1AO.1
Monday, 09 September 2019 Monday, 09 September 2019 Conference Programme ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Energy Conversion Mechanisms and Materials Characterisation Monday, 09 September 2019 Chairpersons: Claude Lévy-Clément (i) CNRS, France OPENING Masafumi Yamaguchi Toyota Technological Institute, Japan PLENARY SESSION 1AP.1 1AO.1.1 From the Hot Carrier Solar Cell to the Intermediate Band Solar Cell, Passing through 08:30 - 10:00 Routes to High Efficiency in Photovoltaics the Multiple-Exciton Generation Solar Cell and Then Back to the Hot Carrier Solar Cell: The Dance of the Electro-Chemical Potentials A. Martí Vega Chairpersons: UPM, Madrid, Spain Seth Hubbard Rochester Institute of Technology, United States 1AO.1.2 Electrical Multi-Probe Investigation of Nanowires for Solar Energy Conversion Antonio Martí Vega A. Nägelein, C. Timm, M. Steidl, P. Kleinschmidt & T. Hannappel UPM, Spain Ilmenau University of Technology, Germany 1AP.1.1 III-V//Si Three-Junction Solar Cells Reaching 30% Efficiency Using Smart Stack 1AO.1.3 Simple Thermionic Model of Hot Carrier Solar Cell with Semi-Infinite Energy Filtering Technology I. Konovalov & B. Ploss K. Makita, H. Mizuno, T. Tayagaki, T. Aihara, R. Oshima, Y. Shoji, H. Takato & T. Sugaya University of Applied Science, Jena, Germany AIST, Tsukuba, Japan R. Müller, P. Beutel, D. Lackner, J. Benick, M. Hermle & F. Dimroth 1AO.1.4 Carrier-Resolved Photo-Hall Fraunhofer ISE, Freiburg, Germany O. Gunawan, D.M. Bishop, Y. Virgus & Y.S. Lee IBM, Yorktown Heights, United States 1AP.1.2 Interconnection 1, 2, 3, 4.0: Buildup towards a PV Technology Hero? S.R. -
Conference Programme
20 - 24 JUNE 2016 Ɣ MUNICH, GERMANY EU PVSEC 2016 ICM - International Congress Center Munich 32nd European PV Solar Energy Conference and Exhibition CONFERENCE PROGRAMME Status 18 March 2016 Monday, 20 June 2016 Monday, 20 June 2016 CONFERENCE PROGRAMME ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Fundamental Characterisation, Theoretical and Modelling Studies Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com. Chairpersons: N.J. Ekins-Daukes (i) (i) = invited Imperial College London, United Kingdom W. Warta (i) Fraunhofer ISE, Germany Monday, 20 June 2016 1AO.1.1 Fast Qualification Method for Thin Film Absorber Materials L.W. Veldhuizen, Y. Kuang, D. Koushik & R.E.I. Schropp PLENARY SESSION 1AP.1 Eindhoven University of Technology, Netherlands G. Adhyaksa & E. Garnett 09:00 - 10:00 New Materials and Concepts for Solar Cells and Modules FOM Institute AMOLF, Amsterdam, Netherlands 1AO.1.2 Transient I-V Measurement Set-Up of Photovoltaic Laser Power Converters under Chairpersons: Monochromatic Irradiance A.W. Bett (i) S.K. Reichmuth, D. Vahle, M. de Boer, M. Mundus, G. Siefer, A.W. Bett & H. Helmers Fraunhofer ISE, Germany Fraunhofer ISE, Freiburg, Germany M. Rusu (i) C.E. Garza HZB, Germany Nanoscribe, Eggenstein-Leopoldshafen, Germany 1AP.1.1 Keynote Presentation: 37% Efficient One-Sun Minimodule and over 40% Efficient 1AO.1.3 Imaging of Terahertz Emission from Individual Subcells in Multi-Junction Solar Cells Concentrator Submodules S. Hamauchi, Y. Sakai, T. Umegaki, I. -
Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research. -
Solar Decathlon 2009 Hours
The National Mall Washington, D.C. Oct. 9–13 and Oct. 15–18, 2009 www.solardecathlon.org 2009 U.S. Capitol Workshops Smithsonian Castle Natural History Museum University of Wisconsin-Milwaukee University of Louisiana at Lafayette Team Missouri (Missouri University of Science & Technology, The University of Arizona University of Missouri) Team Alberta (University of Calgary, SAIT Rice University Polytechnic, Alberta College of Art + Design, Team Ontario/BC (University of Mount Royal College) Waterloo, Ryerson University, Simon Iowa State University Fraser University) Penn State Team Spain (Universidad Politécnica de Madrid) 12th Street Metro Tent 12th Street University of Kentucky The Ohio State University Team Boston (Boston Architectural Team Germany (Technische Universität College, Tufts University) Darmstadt) Virginia Tech Cornell University Universidad de Puerto Rico DECATHLETE WAY University of Minnesota Team California (Santa Clara University, University of Illinois at Urbana-Champaign California College of the Arts) American History Museum Department of Agriculture Main Tent Information 14th Street Smithsonian Metro Station Restrooms Washington Picnic Area Washington, D.C. Monument First Aid SOLAR DECATHLON 2009 HOURS Oct. 9–13 and Oct. 15–18 11 a.m.–3 p.m., Weekdays 10 a.m.–5 p.m., Weekends Houses are closed Oct. 14 for competition purposes. Message From the Secretary of Energy Table of Contents Welcome to Solar Decathlon 2009.............................................2 Exhibits and Events .....................................................................3 -
Thin Film Silicon Solar Cells: Advanced Processing and Characterization - 26 101191 / 151399
April 2008 Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) elaborated by: NET Nowak Energy & Technology Ltd. Cover: Zero-Energy Building: Support Office of Marché International, Kemptthal / ZH 44,6 kWp Solar Power System with Thin Film Solar Cells (Photos: Front cover: SunTechnics Fabrisolar, Back cover: Büro für Architektur Beat Kämpfen, Photo Willi Kracher) Prepared by: NET Nowak Energy & Technology Ltd. Waldweg 8, CH - 1717 St. Ursen (Switzerland) Phone: +41 (0) 26 494 00 30, Fax. +41 (0) 26 494 00 34, [email protected] on behalf of: Swiss Federal Office of Energy SFOE Mühlestrasse 4, CH - 3063 Ittigen postal addresse: CH- 3003 Bern Phone: 031 322 56 11, Fax. 031 323 25 00 [email protected] www.bfe.admin.ch Photovoltaic Programme Edition 2008 Summary Report, Project List, Annual Project Reports 2007 (Abstracts) Contents S. Nowak Summary Report Edition 2008 Page 5 Annual Project Reports 2007 (Abstracts) Page C. Ballif, J. Bailat, F.J. Haug, S. Faÿ, R. Tscharner Thin film silicon solar cells: advanced processing and characterization - 26 101191 / 151399 F.J. Haug, C. Ballif Flexible photovoltaics: next generation high efficiency and low cost thin 27 film silicon modules - CTI 8809 S. Olibet, C. Ballif High efficiency thin-film passivated silicon solar cells and modules - 28 THIFIC: Thin film on crystalline Si - Axpo Naturstrom Fonds 0703 C. Ballif, F. J. Haug, V. Terrazzoni-Daudrix FLEXCELLENCE: Roll-to-roll technology for the production of high efficiency 29 low cost thin film silicon photovoltaic modules - SES-CT-019948 N. Wyrsch, C. Ballif ATHLET: Advanced Thin Film Technologies for Cost Effective Photovoltaics - 30 IP 019670 A. -
Electrical Hints and Tips for Solar Car Challenge Race Teams
Electrical Hints and Tips for Solar Car Challenge Race Teams Revision 1.0 - August 28, 2013. By Dan Lepinski, Solar Engineer In the Public Domain To: All Teams Participating in the Solar Car Challenge .. Past, Present, and Future... Purpose: Suggestions and Comments for Improved Design and Assembly of Solar Cars Introduction By way of introduction, my name is Dan Lepinski. I’m a professional solar energy engineer. 2013 is my 41 st year of involvement in the solar energy industry where I continue to serve as a design engineer, consultant, and advisor. I had the pleasure and frustration of accompanying the 2013 race from Fort Worth, Texas to Los Angeles, California. My role was that of a volunteer. I provided solar-generated 120 volt AC electrical power for any team that needed it for repairs or other purposes along the way. I accomplished this with a large “solar” trailer, which was capable of powering the largest welders and compressors used by any team. 11 of the 14 teams participating in the 2013 Solar Car Challenge used power from my equipment along the race route for their welders, grinders, compressors, drills, saws, and more. They did whatever was necessary to make their cars roadworthy again. Some teams worked for up to an hour or more at a time to effect changes and repairs. It’s not important they used my equipment for this purpose. The important thing to remember ... every 2013 team succeeded in finishing the race. While repairs were underway by various teams, I had an opportunity to view their solar car wiring and construction in detail. -
Integrated Solar Lighting for Pedestrian Crosswalk Visibility
Integrated Solar Lighting for Pedestrian Crosswalk Visibility A report written for the Florida Department of Transportation Authored by Jonathan Scheffe University of Florida Department of Mechanical and Aerospace Engineering Gainesville, FL 32611 October 31st, 2016 Task Order # 977-62 Master Agreement Order # BDV31 PI: Jonathan Scheffe PM: Ronald Chin Co-PM: Trey Tillander III 1 Contents Abstract ........................................................................................................................................... 3 Background and Motivation ........................................................................................................... 4 Description of Relevant Commercial Technologies ....................................................................... 5 Solar Roadways® ......................................................................................................................... 5 Structural Analysis .................................................................................................................. 7 Wattway ...................................................................................................................................... 8 SolaRoad ..................................................................................................................................... 9 Hejimans - Studio Roosegaarde ................................................................................................ 11 Other Possible Solutions .......................................................................................................... -
A New Direction for Renewable Energy
A New Direction For Renewable Energy . Conserving the worlds carbon . At our current usage of carbon their will be no carbon left on this planet in approx 7000 years time. Carbon is the building block of life. This is why we need renewable energy & electric propulsion. AUSI, Australien Universal Space Industries have developed the latest state of the art robotic systems for constructing renewable energy infrastructure. Robotic Renewable Energy Infrastructure Construction . Evolutionary swarm robotics basics . In days gone by & still in these days & hopefully for many years into the future the demoscene has stamped its way into computer immortality. Using complex discrete mathamatics computer programmers are able to push the limits of computational power & produce awe inspiring display hacks. http://www.demoscene.tv/ What started out as abit of tinkering with computers by enthusiasts & hobbyists resulted in attaining government & corporate sponsorship, however has government & corporate sponsorship reduced the creativity of the demoscene ? The demoscene was around before youtube or googlevid & even the internet. What makes the Demoscene stand out from the rest is that computer generated music was blended with computer generated graphics. Three types of ppl make a demo work. [1] coders [2] graphicians [3] musicians And these days many old demo group groupies now work with mathematicians, data miners, scientists & engineers to create EEA Exploratory Engineering Applications . The Magical Seven These Days Comprise Of . [1] coders [2] graphicians [3] musicians [4] mathematicians [5] data miners [6] scientists [7] engineers EEA Exploratory Engineering Applications are still esoteric but do provide humanity a possible alternative reality apart from the traditional highway to hell. -
ROBERT C.N. PILAWA-PODGURSKI Assistant Professor, Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign 4042 ECE Building • 306 N
Robert Pilawa-Podgurski Curriculum Vitae, October 2016 1 of 18 ROBERT C.N. PILAWA-PODGURSKI Assistant Professor, Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign 4042 ECE Building • 306 N. Wright Street • Urbana, IL 61801 Tel. +1 (217) 244-0181 • E-mail: [email protected] • Web: http://pilawa.ece.illinois.edu EDUCATION Massachusetts Institute of Technology Electrical Engineering Ph.D. 2012 Massachusetts Institute of Technology Electrical Engineering and Computer Science M.Eng. 2007 Massachusetts Institute of Technology Electrical Engineering and Computer Science B.S. 2005 Massachusetts Institute of Technology Physics B.S. 2005 ACADEMIC POSITIONS 2012 - present Assistant Professor Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, IL 2012 – present Affiliate Faculty Information Trust Institute, University of Illinois at Urbana-Champaign, Urbana, IL 2016 (summer) Visiting Professor KTH – Royal Institute of Technology, Stockholm, Sweden 2007 – 2011 Research Assistant Laboratory for Electromagnetic and Electronic Systems, Research Laboratory of Electronics, MIT, Cambridge, MA SELECTED HONORS AND AWARDS 2016 IEEE Energy Conversion Congress & Exposition (ECCE) Best Paper Award 2016 Top Innovation Award, IEEE International Future Energy Challenge (Advisor) 2016 UIUC List of Teachers Ranked as Excellent by Their Students (with distinction of ‘outstanding’) – ECE 598RPP Advanced Power Electronics 2016 IEEE Workshop on Control and Modeling for Power Electronics -
Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function. -
A Review on Design and Fabrication of a Solar Roadways
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 09 | Sep 2019 www.irjet.net p-ISSN: 2395-0072 A Review on Design and Fabrication of a Solar Roadways Kohak P.G1, Kandake R.A2, Patekar V.P3, Ghorpade D.S4 1,2,3,4Asstt. Prof. Dept. of Mechanical Engineering, DVVP COE, Ahmednagar, Maharashtra, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - The Solar roadways is a series of structurally- externalized costs of burning fossil fuels. Perhaps the most engineered solar panels that are driven upon. The idea is to important element of solar roadways technology is that its replace all current petroleum-based asphalt roads, parking power generation capacity demonstrates the base load lots and driveways with solar road panels that collect energy viability of renewable energy sources. Clean energy to be used by homes and businesses. The renewable energy technology existence can power the entire countries created by solar road panels will replace the current need for economy and more. fossil fuel which is used for generation of electricity in turn reduces greenhouse gases. An intelligent highway 1.1 Mean Daily Global Isolation infrastructure and a self-healing decentralized power grid that will eliminate our need for fossil fuels. Additionally, it can Insolation (also known as solar irradiation) is a measure of be used for traffic detection, illuminated roadways and on the the solar radiation received by a given area over a given go charging of electric vehicles using inductive charging. period of time. The unit used for insolation is either MJ/m2 or kWh/m2. The mean daily global insolation will give a Key Words: solar, renewable energy, fossil fuels, measure of total solar energy available in each part of India.