Ocean, Platform, and Signal Processing Effects on Synthetic Aperture Sonar Performance

Total Page:16

File Type:pdf, Size:1020Kb

Ocean, Platform, and Signal Processing Effects on Synthetic Aperture Sonar Performance AD-A267 288 N Ocean, Platform, and Signal Processing Effects on -• Synthetic Aperture Sonar Performance by Kenneth D. Rolt DTIC fS ELECTE Submitted in partial fulfillment AUG 0 3 1993 of the requirements for the degree of U A U Scientiae Magister at the Massachusetts Institute of Technology Cambridge, MA 02139 February 1991 © Kenneth D. Rolt, 1990; All rights reserved. The author hereby grants MIT and the C.S. Draper Laboratory permission to reproduce and/or distribute copies of this thesis in-whole or in-part. Signature of Author_________________________________ Department of Ocean Engineering 28 November 1990 Certified by Professor Jerome Milgram Thesis Co-Supervisor Certified by Professor Henrik Schmidt Thesis Co-Supervisor Accepted by Professor A. Douglas Carmichael Chairman, Ocean Engineering Graduate Committee This document ha- b"en approved fo: public relea-e and sale; its distribution is un1imite . 4k # Ocean, Platform, and Signal Processing Effects on Synthetic Aperture Sonar Performance by Kenneth D. Rolt keywords: synthetic aperturesonar (SAS), synthetic aperture radar(SAR), acousticalimaging, radarimaging ABSTRACT Synthetic Aperture Sonar (SAS), the underwater sound application of the aperture synthesis method borrowed from Synthetic Aperture Radar (SAR) is investigated by means of oceaa nitdium effects, platform motion effects, and signal processing effects. Synthetic aperture methods, both in radar and in sonar, allow large synthesized apertures, or equivalently synthesized arrays, to be formed from the combined use of signal processing and a small, real aperture transducer (e.g. a radar or a sonar transducer). Large synthetic apertures give rise to relatively narrow synthesized beams, which in turn allow very high resolution focused images to be formed from radar or sonar data. The target in the synthetic aperture sonar case could be the ocean bottom, and the objective could be, for example, ocean-bottom mapping or searching for a sunken vessel. While synthetic aperture radars have been extensively developed and used since the late 1950's, synthetic aperture sonars have been rare except for a number of academic papers and a few experimental systems. A computer-based model has been created to evaluate the imaging potential of a synthetic aperture sonar system within a horizontally stratified ocean. The model includes ocean refraction, spatial and temporal coherence, surface and bottom influences via multipath, deterministic and random platform motion, and a variety of processing options. This model, the most extensive ever used for SAS simulations, has been verified by comparison to a SAS ocean experiment performed by others. By the use of the model, the three dominant influences of ocean, platform, and signal processing may be studied on the performance of synthetic aperture sonar imaging. The ocean influence on SAS imagery is shown to depend on (1) the extent of spatial/temporal coherence which limits the useful aperture length that may be used for sharp imaging, and (2) the refraction profile which must be accounted for in image reconstruction to ensure a match between the real ocean and the estimated ocean in the computer model; this turns out to be a geometric matched fi!tcr. 2 DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. Platform motion is also shown to degrade the imagery, and the model confirms that lateral platform motion should be measured to within the canonical X/8 distance found in the SAR literature for the sharpest images, but also that the image persists even for lateral platform motion in excess of X/8. Finally, a number of processing effects are shown, with the most important being that: (1) synthetic aperture radars and sonars working exactly at the Nyquist sampling rate do not entirely null alias lobes (an assumption often made in the SAS literature); (2) the use of many sub-aperture lengths for a Nyquist sampled synthetic aperture will force the aliases to the level of the far sidelobes (hence making them invisible); (3) the bandwidth must be carefully chosen for a Nyquist-sampled synthetic aperture to minimize alias images; and (4) broadband operation is always useful for undersampled synthetic apertures, and a "ballpark" formula is developed to estimate the level of alias image smear. [Work supported by the Charles Stark Draper Laboratory]. Acce.;ion For NTiS CRk&l SlIC IAI L1 U:j:@iJ ,d B .......... .. f-C pT I-S:.i 3 TY'IC QUALITY INSPEfCTED 3 -- • M • iii i i | i i •3 ACKNOWLEDGEMENTS First, I acknowledge the guidance and support of my co-supervisors in this effort: Professor Jerome Milgram and Professor Henrik Schmidt. I also thank the Charles Stark Draper Laboratory for sponsoring the work. I must naturally recognize the previous work upon which this thesis is constructed, particularly by those efforts in radar and sonar wave propagation, and in synthetic aperture radar and sonar. Although the bibiiography in this thesis accounts for most of the published 'prior art' in synthetic aperture sonar, the list of contributors to the field is considerably longer. This work is, in its own way, a minor improvement on an already invented and constantly-improving wheel. Many individuals have helped me along during this work. At the start, Dr. George M. Walsh of the Raytheon Company, Submarine Signal Division, furnished me with three volumes of Submarine Signal Division reports on synthetic aperture sonar and medium stability. Dr. William Carey also furnished copies of papers on synthetic aperture sonar, particularly on passive synthetic arrays. Dr. Shahen A. Hovanessian kindly sent me a copy of his book on synthetic arrays. I had the pleasure of meeting Dr. Philippe de Hecring at the Acoustical Society of America Spring Meeting (May 1990), discussed synthetic arrays with him. de Heering also furnished me with a copy of his Ph.D. thesis on SAS. I was also fortunate in finding the Dec. 1989 J. Acoust. Soc. Am. paper on a prototype SAS by Dr. Peter T. Gough and Dr. Michael P. Hayes, of the University of Canterbury, Christchurch, New Zealand. This publication of synthetic aperture sonar images on a known target enabled me to verify my computer model. Gough and Hayes were both kind enough to correspond with me via mail concerning their work, and also sent me a copy of Dr. Hayes' Ph.D. thesis. Howard Zebker and W.T.K. Johnson of the Jet Propulsion Laboratory, California Institute of Technology, also provided me with SAR information and images containing azimuthal aliases, which also helped confirm my synthetic aperture model. Locally, I was also helped by many others. At MIT I was grateful for the discussions with DJ Tang, Brian Tracey and John Halsema in particular, and by many others in the office I share. Dr. Jeff Lozow and John Irza of the Charles Stark Draper Laboratory were most helpful. Dr. John L. Butler of Image Acoustics was most helpful in discussing all sorts of acoustics, including my work, and in keeping me active in the design of underwater sound sources. 4 My father, George H. Rolt, deserves some sort of award (perhaps part of my diploma) for the many discussions of my work and for requesting a rough draft of this for parental scrutiny. Parental scrutiny soon gave way to parental editing, in extremis. However, both the writer and the reader of this thesis greatly benefit from the editing. Thanks Dad. Christine Coughlin also gets an award for just-plain putting up with me during 1988-1990, and sticking with me because of my "future potential." The last note is extended to the reader of this thesis: since almost no one ever really reads these things, you deserve an award for getting at least this far. "Work like hell, tell everyone everything you know, close a deal with a handshake, and have fun." - Harold E. "Doc" Edgerton, a pioneer, inventor and educator in many areas, including imaging sonar. CONTENTS ABSTRACT ................................................................................................. 2 ACKNOW LEDGEM ENTS ..................................................................................................... 4 L IST O F F IG U R E S ................................................................................................................. 8 L IST O F T A B L E S ................................................................................................................ 1 1 NOTATION AND LIST OF SYM BOLS ................................................................... ......... 12 CHAPTER 1 INTRODUCTION ...................................................................................... 15 1.1 History and Overview ............................................................................................ 15 1.1.1 Synthetic Aperture Radar (SAR) ..................................................................... 19 1.1.2 Synthetic Aperture Sonar (SAS) ..................................................................... 21 1.2 Previous Work in SAS ........................................................................................... 22 1.2.1 'Low' Frequency Active SAS (below 1 MHz) .......................................... 24 1.2.2 'High' Frequency Active SAS (above 1 MHz) .......................................... 28 1.2.3 Passive SAS ....................................................................................... 30 1.3 Contributions of this Thesis to the Field of SAS .......................................................
Recommended publications
  • It Has Often Been Said That Studying the Depths of the Sea Is Like Hovering In
    It has often been said that studying the depths of the sea is like hovering in a balloon high above an unknown land which is hidden by clouds, for it is a peculiarity of oceanic research that direct observations of the abyss are impracticable. Instead of the complete picture which vision gives, we have to rely upon a patiently put together mosaic representation of the discoveries made from time to time by sinking instruments and appliances into the deep. (Murray & Hjort, 1912: 22) Figure 1: Portrait of the H.M.S. Challenger. Prologue: Simple Beginnings In 1872, the H.M.S Challenger began its five- year journey that would stretch across every ocean on the planet but the Arctic. Challenger was funded for a single reason; to examine the mysterious workings of the ocean below its surface, previously unexplored. Under steam power, it travelled over 100,000 km and compiled 50 volumes of data and observations on water depth, temperature and conditions, as well as collecting samples of the seafloor, water, and organisms. The devices used to collect this data, while primitive by today’s standards and somewhat imprecise, were effective at giving humanity its first in-depth look into the inner workings of the ocean. By lowering a measured rope attached to a 200 kg weight off the edge of the ship, scientists estimated the depth of the ocean. A single reading could take up to 80 minutes for the weight to reach bottom. Taking a depth measurement also necessitated that the Challenger stop moving, and accurate mapping required a precise knowledge of where the ship was in the world, using navigational tools such as sextants.
    [Show full text]
  • David Moretti Phd Thesis
    ESTIMATING THE EFFECT OF MID-FREQUENCY ACTIVE SONAR ON THE POPULATION HEALTH OF BLAINVILLE'S BEAKED WHALES (MESOPLODON DENSIROSTRIS) IN THE TONGUE OF THE OCEAN David Moretti A Thesis Submitted for the Degree of PhD at the University of St Andrews 2019 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/19250 This item is protected by original copyright Estimating the effect of mid-frequency active sonar on the population health of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean David Moretti This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD) at the University of St Andrews March 2019 Abstract Passive acoustic methods were used to study the effect of mid-frequency active sonar (MFAS) on a population of Blainville’s beaked whales (Mesoplodon densirostris, Md) at the U.S. Navy Atlantic Undersea Test and Evaluation Centre (AUTEC), Bahamas. AUTEC contains an array of bottom-mounted hydrophones that can detect Md echolocation clicks. Methods to estimate abundance, the risk of behavioural disruption, and the population level effect of repeated MFAS exposure are presented. A passive acoustic abundance estimation method, a parametric equation that predicts the probability of foraging dive disruption as a function of MFAS received level and an Md bioenergetics model were developed. The effect of changes in energy flow on the demographic characteristics of an Md population were explored. Passive acoustic data from AUTEC were used to estimate the behavioural disturbance resulting from sonar operations; combined with the bioenergetic model, this suggested that the effect of sonar operations could cause an increase in a female’s age at maturity, a longer inter-calf-interval, calf survival rate and probability of giving birth that could in turn result in a declining population.
    [Show full text]
  • Acoustic Cymbal Transducers-Design, Hydrostatic Pressure Compensation, and Acoustic Performance
    Calhoun: The NPS Institutional Archive DSpace Repository Theses and Dissertations 1. Thesis and Dissertation Collection, all items 2004-03 Acoustic cymbal transducers-design, hydrostatic pressure compensation, and acoustic performance Jenne, Kirk E. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/1670 Downloaded from NPS Archive: Calhoun NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS ACOUSTIC CYMBAL TRANSDUCERS – DESIGN, HYDROSTATIC PRESSURE COMPENSATION, AND ACOUSTIC PERFORMANCE by Kirk E. Jenne March 2004 Thesis Advisor: Thomas R. Howarth Thesis Co-Advisor: Dehua Huang Approved for public release; distribution unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 2004 Master’s Thesis 4. TITLE AND SUBTITLE: Acoustic Cymbal Transducers – Design, 5. FUNDING NUMBERS Pressure Compensation, and Acoustic Performance 6. AUTHOR(S) Kirk E. Jenne 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9.
    [Show full text]
  • The Development of SONAR As a Tool in Marine Biological Research in the Twentieth Century
    Hindawi Publishing Corporation International Journal of Oceanography Volume 2013, Article ID 678621, 9 pages http://dx.doi.org/10.1155/2013/678621 Review Article The Development of SONAR as a Tool in Marine Biological Research in the Twentieth Century John A. Fornshell1 and Alessandra Tesei2 1 National Museum of Natural History, Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA 2 AGUAtech, Via delle Pianazze 74, 19136 La Spezia, Italy Correspondence should be addressed to John A. Fornshell; [email protected] Received 3 June 2013; Revised 16 September 2013; Accepted 25 September 2013 Academic Editor: Emilio Fernandez´ Copyright © 2013 J. A. Fornshell and A. Tesei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The development of acoustic methods for measuring depths and ranges in the ocean environment began in the second decade of the twentieth century. The two world wars and the “Cold War” produced three eras of rapid technological development in the field of acoustic oceanography. By the mid-1920s, researchers had identified echoes from fish, Gadus morhua, in the traces from their echo sounders. The first tank experiments establishing the basics for detection of fish were performed in 1928. Through the 1930s, the use of SONAR as a means of locating schools of fish was developed. The end of World War II was quickly followed by the advent of using SONAR to track and hunt whales in the Southern Ocean and the marketing of commercial fish finding SONARs for use by commercial fisherman.
    [Show full text]
  • Sonar: Empire, Media, and the Politics of Underwater Sound
    Sonar: Empire, Media, and the Politics of Underwater Sound John Shiga Ryerson University ABSTRACT This article traces the development of acoustic navigation media, or “sonar,” in the first half of the twentieth century, focusing on the relationships forged between underwater sound, electric media, and new techniques of listening. The central argument is that sonar shaped, and was shaped by, the expansion of warfare and capital underwater, and that this expansion came to be conceptualized by nautical organizations as dependent upon the con - trol of underwater sound. Through analysis of key episodes in the conquest of subsea space, the author explores scientific, military, and commercial efforts to sense underwater objects and demonstrates how these efforts helped reconceptualize oceanic water as a component of undersea acoustic media and led to the material reorganization of the ocean’s acoustic field. KEYWORDS Sonar; Military communication; Materiality; Subjectivity RÉSUMÉ Cet article retrace le développement de médias acoustiques de navigation ou « sonars » dans la première moitié du vingtième siècle en mettant l’accent sur les rapports créés entre les sons sous-marins, les médias électriques et les nouvelles techniques d’écoute. L’argument central de l’article est qu’il y a eu une influence réciproque entre le sonar et l’expansion sous-marine de la guerre et du capital, et que les organisations nautiques ont commencé à concevoir cette expansion comme nécessitant le contrôle des sons sous-marins. Au moyen d’une analyse d’épisodes clés dans la conquête de l’espace sous-marin, l’auteur explore les efforts scientifiques, militaires et commerciaux pour repérer les objets sous l’eau et démontre comment ces efforts ont aidé à réaliser une nouvelle conception de l’eau océanique comme composante des médias acoustiques sous-marins, menant à une réorganisation matérielle du champ acoustique de l’océan.
    [Show full text]
  • A Review on Deep Learning-Based Approaches for Automatic Sonar Target Recognition
    electronics Review A Review on Deep Learning-Based Approaches for Automatic Sonar Target Recognition Dhiraj Neupane and Jongwon Seok * Department of Information and Communication Engineering, Changwon National University, Changwon-si, Gyeongsangnam-do 51140, Korea; [email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Abstract: Underwater acoustics has been implemented mostly in the field of sound navigation and ranging (SONAR) procedures for submarine communication, the examination of maritime assets and environment surveying, target and object recognition, and measurement and study of acoustic sources in the underwater atmosphere. With the rapid development in science and technology, the advancement in sonar systems has increased, resulting in a decrement in underwater casualties. The sonar signal processing and automatic target recognition using sonar signals or imagery is itself a challenging process. Meanwhile, highly advanced data-driven machine-learning and deep learning-based methods are being implemented for acquiring several types of information from underwater sound data. This paper reviews the recent sonar automatic target recognition, tracking, or detection works using deep learning algorithms. A thorough study of the available works is done, and the operating procedure, results, and other necessary details regarding the data acquisition process, the dataset used, and the information regarding hyper-parameters is presented in
    [Show full text]
  • Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active–Passive Sonar Systems
    Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active–Passive Sonar Systems STERGIOS STERGIOPOULOS, SENIOR MEMBER, IEEE Progress in the implementation of state-of-the-art signal- NOMENCLATURE processing schemes in sonar systems is limited mainly by the moderate advancements made in sonar computing architectures Complex conjugate transpose operator. and the lack of operational evaluation of the advanced processing Power spectral density of signal . schemes. Until recently, matrix-based processing techniques, such as adaptive and synthetic-aperture processing, could not AG Array gain. be efficiently implemented in the current type of sonar systems, Small positive number designed to main- even though it is widely believed that they have advantages that can address the requirements associated with the difficult tain stability in normalized least mean operational problems that next-generation sonars will have to square adaptive algorithm. solve. Interestingly, adaptive and synthetic-aperture techniques Narrow-band beam-power pattern of may be viewed by other disciplines as conventional schemes. For a line array expressed by the sonar technology discipline, however, they are considered as advanced schemes because of the very limited progress that has . been made in their implementation in sonar systems. Broad-band beam-power pattern of a line This paper is intended to address issues of implementation of array steered at direction . advanced processing schemes in sonar systems and also to serve as a brief overview to the principles and applications of advanced Beams for conventional or adaptive sonar signal processing. The main development reported in beam formers or plane wave this paper deals with the definition of a generic beam-forming response of a line array steered structure that allows the implementation of nonconventional at direction and expressed by signal-processing techniques in integrated active–passive sonar .
    [Show full text]
  • Compressive Underwater Sonar Imaging with Synthetic Aperture Processing
    remote sensing Article Compressive Underwater Sonar Imaging with Synthetic Aperture Processing Ha-min Choi 1 , Hae-sang Yang 1 and Woo-jae Seong 1,2,* 1 Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 08826, Korea; [email protected] (H.-m.C.); [email protected] (H.-s.Y.) 2 Research Institute of Marine Systems Engineering, Seoul National University, Seoul 08826, Korea * Correspondence: [email protected]; Tel.: +82-2-880-7332 Abstract: Synthetic aperture sonar (SAS) is a technique that acquires an underwater image by synthesizing the signal received by the sonar as it moves. By forming a synthetic aperture, the sonar overcomes physical limitations and shows superior resolution when compared with use of a side-scan sonar, which is another technique for obtaining underwater images. Conventional SAS algorithms require a high concentration of sampling in the time and space domains according to Nyquist theory. Because conventional SAS algorithms go through matched filtering, side lobes are generated, resulting in deterioration of imaging performance. To overcome the shortcomings of conventional SAS algorithms, such as the low imaging performance and the requirement for high-level sampling, this paper proposes SAS algorithms applying compressive sensing (CS). SAS imaging algorithms applying CS were formulated for a single sensor and uniform line array and were verified through simulation and experimental data. The simulation showed better resolution than the !-k algorithms, one of the representative conventional SAS algorithms, with minimal performance degradation by side lobes. The experimental data confirmed that the proposed method is superior and robust with respect to sensor loss.
    [Show full text]
  • Underwater Acoustics and Its Applications: a Historical Review
    Proceedings of the 2nd EAA International Symposium on Hydroacoustics 24-27 May 1999, Gdańsk-Jurata POLAND Underwater Acoustics and its Applications. A Historical Review. Leif Bjerna, Irina Bjerne Department of Industrial Acoustics, Technical University of Denmark, Building 425, DK-2800 Lyngby, Denmark. l. Introduction 2. Studies of underwater acoustics before World War! Underwater acoustics is one of the fastest grow- ing fields of research in acoustics. The number of The Greek philosopher,. Aristotle (384 - 322 publications per year in underwater acoustics is still B.C.) may have been one of the first to note that increasing. The relationship to other fields of im- sound could be heard in water as well as in air. In portance for science and technology like oceanogra- 1490 the Italian, Leonardo da Vinci (1452 - 1519) phy, seismology and fishery is becoming more close. wrote in his notebook: "if you cause your ship to Every year billions of dollars are spent on the use of stop, and place the head of a long tube in the water underwater acoustics by the mineral industry (oil and place the other extremity to your ear, you will and solid mineral exploration in the sea), by the food hear ships at great distances". Of course, the back- industry (fishing), by the transportation and recrea- ground noise of lakes and seas was much lower in tion industries (navigation and safety devices) and his days than now, when all kinds of ships pollute by the worlds navies (undersea warfare). A great the seas with noise. About one hundred years later, number of industrial companies are developing and Francis Bacon in Narural History supported the manufacturing instrurnents and devices for under- idea, that water is the principal medium by which water acoustics, including for instance instruments sounds originating therein reach a human observer for inspection and mapping of the seabed, for un- standing nearby.
    [Show full text]
  • Signal Processing for Synthetic Aperture Sonar Image Enhancement
    Signal Processing for Synthetic Aperture Sonar Image Enhancement Hayden J. Callow B.E. (Hons I) A thesis presented for the degree of Doctor of Philosophy in Electrical and Electronic Engineering at the University of Canterbury, Christchurch, New Zealand. April 2003 Abstract This thesis contains a description of SAS processing algorithms, offering improvements in Fourier-based reconstruction, motion-compensation, and autofocus. Fourier-based image reconstruction is reviewed and improvements shown as the result of improved system modelling. A number of new algorithms based on the wavenumber algorithm for correcting second order effects are proposed. In addition, a new framework for describing multiple-receiver reconstruction in terms of the bistatic geometry is presented and is a useful aid to understanding. Motion-compensation techniques for allowing Fourier-based reconstruction in wide- beam geometries suffering large-motion errors are discussed. A motion-compensation algorithm exploiting multiple receiver geometries is suggested and shown to provide substantial improvement in image quality. New motion compensation techniques for yaw correction using the wavenumber algorithm are discussed. A common framework for describing phase estimation is presented and techniques from a number of fields are reviewed within this framework. In addition a new proof is provided outlining the relationship between eigenvector-based autofocus phase esti- mation kernels and the phase-closure techniques used astronomical imaging. Micron- avigation techniques are reviewed and extensions to the shear average single-receiver micronavigation technique result in a 3{4 fold performance improvement when operat- ing on high-contrast images. The stripmap phase gradient autofocus (SPGA) algorithm is developed and extends spotlight SAR PGA to the wide-beam, wide-band stripmap geometries common in SAS imaging.
    [Show full text]
  • Signal Processing Methods for Active Synthetic Aperture Sonar
    FOI-R--0528--SE SWEDISH DEFENCE RESEARCH AGENCY FOI-R--0528--SE Systems Technology June 2002 SE-172 90 Stockholm ISSN 1650-1942 Sweden Technical Report Signal Processing Methods for Active Synthetic Aperture Sonar Mattias Jönsson Elias Parastates Geoffrey Shippey Jörgen Pihl Peter Karlsson Eva Dalberg Bernt Nilsson 1 FOI-R--0528--SE FOI-R--0528--SE Issuing organization Report number, ISRN Report type FOI-R--0528--SE Technical Report FOI - Swedish Defence Research Agency Systems Technology Research area code SE-172 90 Stockholm 4. C4ISR Sweden Month year Project number June 2002 E6053 Customers code 5. Commissioned Research Sub area code 43 Underwater Sensors Author/s (editor/s) Project manager Mattias Jönsson, Elias Parastates, Jörgen Pihl Geoffrey Shippey, Jörgen Pihl, Approved by Peter Karlsson, Eva Dalberg, Bernt Nilsson Sponsoring agency Swedish Armed Forces Scientifically and technically responsible Mattias Jönsson Report title Signal Processing Methods for Active Synthetic Aperture Sonar Abstract In the autumn 2001 FOI carried out a field experiment at the Älvsnabben test site in the southern Stockholm archipelago. The aim of the experiment was to test Synthetic Aperture Sonar (SAS) algorithms developed at FOI during the last two years. These algorithms had previously been used to analyse data from an earlier experiment at the Djupviken test site with good results. The same equipment was used in both experiments, but with minor modifications to the transmitter. Studies of the recorded data revealed several shortcomings in the experimental equipment and experimental mistakes which made the analysis very complicated. Most problems stemmed from the lack of a proper naviga- tion instrument on the Remotely Operated Vehicle (ROV) carrying the sonar.
    [Show full text]
  • A Brief History of Active Sonar Angela D’Amico1 and Richard Pittenger2
    Aquatic Mammals 2009, 35(4), 426-434, DOI 10.1578/AM.35.4.2009.426 A Brief History of Active Sonar Angela D’Amico1 and Richard Pittenger2 1Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA; E-mail: [email protected] 2Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543-1049, USA Abstract the coast of Newfoundland, Canada. Work on what was termed the Fessenden oscillator was conducted As background for this special issue on strand- until 1931, during which time the frequency was ings and mid-frequency active sonar (MFAS), this increased from 540 Hz to 1,000 Hz (Lasky, 1977; paper presents a brief history of active sonar, trac- Hackman, 1984; Bjørnø, 2003; Katz, 2005). ing the development of MFAS from its origins in The emergence in World War I of the submarine the early 20th century through the development of as a weapon of choice of weaker naval powers— current tactical MFAS. an “asymmetrical threat” in today’s parlance— stimulated the need to detect submerged subma- Key Words: mid-frequency active sonar, MFAS, rines that were otherwise invisible (Cote, 2000). anti-submarine warfare, ASW, whales The stealthiness of the submarine and the opacity of the oceans profoundly changed naval warfare Introduction for the remainder of the 20th century (Keegan, 1990; Cote, 2000). Since sound is the only trans- It has been suggested from several fronts in recent mitted energy that penetrates water for any appre- years that surface ship mid-frequency active sonar ciable distance, acoustic echo-ranging had to be (MFAS) use is responsible for mass strandings of exploited to counter this threat.
    [Show full text]