Holly Leafminer

Total Page:16

File Type:pdf, Size:1020Kb

Holly Leafminer Pest Profile Photo credit: Gyorgy Csoka, Hungary Forest Research Institute, Bugwood.org licensed under a Creative Commons Attribution 3.0 License. Common Name: Holly Leafminer Scientific Name: Phytomyza ilicicola Order and Family: Diptera; Agromyzidae Size and Appearance: Length (mm) Appearance Egg - Laid within newly developing leaves Larva/Nymph < 1.5 mm - Small, yellow maggot Adult ~ 3 mm - Small, black fly Pupa (if applicable) - Pupation occurs within leaf Type of feeder (Chewing, sucking, etc.): Larvae have chewing mouthparts and adults have sponging mouthparts. Host plant/s: American Holly, but will also attack English and Chinese hollies. Description of Damage: Females flies will make small pinpoint holes in newly forming leaves known as “feeding punctures,” which both the males and females will use to feed on the leaf juices. After mating, the female will slit the undersides of newly developing leaves in order to oviposit her eggs within the leaf. Eggs create small raised bumps on the leaf. Once the eggs hatch they will create a mine within the leaf where the larvae will feed on leaf tissue until pupation. Mines or tunnels will have a yellowish or brown color. Leaves may also become distorted and flecked with tiny brown dots and eventually will die and fall to the ground. References: Hoover, G. A. (2003, April). Native Holly Leafminer (Department of Entomology). Retrieved November 02, 2017, from http://ento.psu.edu/extension/factsheets/native-holly-leafminer Missouri Botanical Garden. (n.d.). Holly leaf miner. Retrieved March 01, 2016, from http://www.missouribotanicalgarden.org/gardens-gardening/your-garden/help-for-the-home- gardener/advice-tips-resources/pests-and-problems/insects/flies/holly-leaf-miner.aspx .
Recommended publications
  • Serpentine Leaf Miner
    Fact sheet Serpentine leafminer What is Serpentine leafminer? Serpentine leafminer (Liriomyza huidobrensis) is a small fly whose larvae feed internally on plant tissue, particularly the leaf. Feeding of the larvae disrupts photosynthesis and reduces the quality and yield of plants. This pest has a wide host range, including many economically important vegetable, cut flower and grain crops. What does it look like? The black flies are just visible (1-2.5 mm in length) Central Science Laboratory, Harpenden Archive, British Crown, Bugwood.org and have yellow spots on the head and thorax. Leaf The small adult fly is predominately black with some yellow markings mines caused by larval feeding are usually white with dampened black and dried brown areas. These are typically serpentine or irregular shape, and increase in size as the larvae mature. Damage to the plant is caused in several ways: • Leaf stippling resulting from females feeding or laying eggs. • Internal mining of the leaf by the larvae. • Secondary infection by pathogenic fungi that enter through the leaf mines or puncture wounds. • Mechanical transmission of viruses. Merle Shepard, Gerald R.Carner, and P.A.C Ooi, Bugwood.org Ooi, P.A.C and R.Carner, Gerald Shepard, Merle Serpentine mines on an onion leaf caused by the feeding What can it be confused with? larvae Australia has a large number of Agromyzidae flies that look similar to the Serpentine leafminer, however these rarely attack economically important species. What should I look for? A Serpentine leafminer infestation would most likely be detected through the presence of the mines in leaf tissue.
    [Show full text]
  • Proceedings of the Third Annual Northeastern Forest Insect Work Conference
    Proceedings of the Third Annual Northeastern Forest Insect Work Conference New Haven, Connecticut 17 -19 February 1970 U.S. D.A. FOREST SERVICE RESEARCH PAPER NE-194 1971 NORTHEASTERN FOREST EXPERIMENT STATION, UPPER DARBY, PA. FOREST SERVICE, U.S. DEPARTMENT OF AGRICULTURE WARREN T. DOOLITTLE, DIRECTOR Proceedings of the Third Annual Northeastern Forest Insect Work Conference CONTENTS INTRODUCTION-Robert W. Campbell ........................... 1 TOWARD INTEGRATED CONTROL- D. L,Collifis ...............................................................................2 POPULATION QUALITY- 7 David E. Leonard ................................................................... VERTEBRATE PREDATORS- C. H. Backner ............................................................................2 1 INVERTEBRATE PREDATORS- R. I. Sailer ..................................................................................32 PATHOGENS-Gordon R. Stairs ...........................................45 PARASITES- W.J. Tamock and I. A. Muldrew .......................................................................... 59 INSECTICIDES-Carroll Williams and Patrick Shea .............................................................................. 88 INTEGRATED CONTROL, PEST MANAGEMENT, OR PROTECTIVE POPULATION MANAGEMENT- R. W. Stark ..............................................................................1 10 INTRODUCTION by ROBERT W. CAMPBELL, USDA Forest Service, Northeastern Forest Experiment Station, Hamden, Connecticut. ANYPROGRAM of integrated control is
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Alfalfa Insect Survey (2014F)62R
    2017 Alfalfa Insect Survey (2014F)62R Comprehensive report on Alberta alfalfa survey 2014-2016 Kathrin Sim and Scott Meers Alberta Agriculture and Forestry, Pest Surveillance Section Crop Diversification Centre South, 301 Horticultural Station Road East Brooks Alberta T1R 1E6 1 2014 - 2016 Alfalfa insect survey Table of Contents Introduction ..................................................................................................................................... 3 Methods........................................................................................................................................... 6 Field selection ............................................................................................................................. 6 Collection .................................................................................................................................... 7 Paired Lygus study .................................................................................................................... 11 Results and Discussion ................................................................................................................. 11 Alfalfa blotch leafminer ............................................................................................................ 11 Sweeps ...................................................................................................................................... 14 Pest insects ...........................................................................................................................
    [Show full text]
  • Pigeonpea Pod Fly Melanagromyza Obtusa (Malloch) (Agromyzidae)
    DACS-P-01703 Pest Alert created December 2003 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture Pigeonpea Pod Fly Melanagromyza obtusa (Malloch) (Agromyzidae) Gary J. Steck, [email protected], Florida Department of Agriculture & Consumer Services, Division of Plant Industry INTRODUCTION: Larvae and pupae from an infested dooryard planting of pigeonpea pods found on 20 December 2003 in Miami were reared to the adult stage. The immature and adult stages match published descriptions of the pigeonpea pod fly, Melanagromyza obtusa (Malloch), and specimens obtained from Puerto Rico. The pigeonpea pod fly is thought to have been present in Puerto Rico since about 2000. Surveys to date have detected other infested pigeonpea pods in four 1-square-mile sections in the Miami area. These are the first records of the pigeonpea pod fly from the continental United States. DESCRIPTION: Pigeonpea pod fly is native to tropical Asia where it occurs widely, being present in India, Sri Lanka, Bangladesh, Myanmar, Nepal, Pakistan, Philippines, Thailand, Vietnam, Taiwan, Japan, Indonesia, Malaya and New Guinea. Recently, it has appeared in the Dominican Republic and Puerto Rico. HOST PLANTS: Known hosts include one or more species of Cajanus (including pigeonpea (Fig. 1)), Cicer (e.g., chickpea), Dunbaria, Flemingia, Phaseolus (bean), Rhyncosia, Tephrosia, and Vigna (including mung bean and cowpea). ECONOMIC DAMAGE: Larvae feed in the seed consuming its starchy portions and the embryo (Fig. 2). They leave a trail of excreta which renders the seed inedible, and damaged embryos will not germinate. Crop loss is highly variable depending on the crop, location, and season, but damage may be severe with over 90% of seeds infested.
    [Show full text]
  • Landscape Message: Jun 12, 2020
    Visit The University of Massachusetts Amherst Apply Give Search UMass.edu (/) Coronavirus (COVID-19) Resources from UMass Extension and the Center for Agriculture, Food and the Environment: ag.umass.edu/coronavirus (/coronavirus) LNUF Home (/landscape) About (/landscape/about) Newsletters & Updates (/landscape/newsletters-updates) Publications & Resources (/landscape/publications-resources) Services (/landscape/services) Education & Events (/landscape/upcoming-events) Make a Gift (https://securelb.imodules.com/s/1640/alumni/index.aspx?sid=1640&gid=2&pgid=443&cid=1121&dids=2540) Landscape Message: Jun 12, 2020 Jun 12, 2020 Issue: 9 UMass Extension's Landscape Message is an educational newsletter intended to inform and guide Massachusetts Green Industry professionals in the management of our collective landscape. Detailed (/landscape) reports from scouts and Extension specialists on growing conditions, pest activity, and cultural practices for the management of woody ornamentals, trees, and turf are regular features. The Search CAFE following issue has been updated to provide timely management information and the latest regional Search this site news and environmental data. Search UMass Extension has developed a listing of resources for commercial horticulture operations in Massachusetts to help keep you informed and aware of relevant policies and best practices for landscapers, turf managers, arborists, nurseries, garden centers, and Newsletters & greenhouse producers. Updates For our COVID-19 Information and Support for Landscapers, Nurseries, Turf Managers, Garden Centers, Arborists, and Greenhouse Operations in Massachusetts, go Landscape Message to https://ag.umass.edu/landscape/news/covid-19-information-support-for-landscapers- (/landscape/landscape-message) nurseries-turf-managers-garden-centers (/landscape/news/covid-19-information-support- Archived Landscape Messages (/landscape/landscape- for-landscapers-nurseries-turf-managers-garden-centers).
    [Show full text]
  • Belowground Herbivore Interactions
    ARTICLE Received 20 Apr 2014 | Accepted 30 Jul 2014 | Published 22 Sep 2014 DOI: 10.1038/ncomms5851 OPEN Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above–belowground herbivore interactions Wei Huang1, Evan Siemann2, Li Xiao1,3, Xuefang Yang1,3 & Jianqing Ding1 Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase con- specific adult feeding, but decrease heterospecific aboveground insect feeding and abun- dance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow her- bivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and below- ground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. 1 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China. 2 Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA. 3 University of Chinese Academy of Sciences, Beijing 100049, China. Correspondence and requests for materials should be addressed to J.D. (email: [email protected]). NATURE COMMUNICATIONS | 5:4851 | DOI: 10.1038/ncomms5851 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • Leafminer Pests of Connecticut Nurseries
    Dr. Hugh Smith Valley Laboratory The Connecticut Agricultural Experiment Station 153 Cook Hill Road Windsor, CT 06095-0248 Phone: (860) 687-4763 Fax: (860) 683-4987 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes Leafminer Pests of Connecticut Nurseries Leafminers are pests of annual flowering plants, Larvae that feed in a manner that clears a patch of perennials, shrubs and trees. The larvae of tissue produce blotch mines. There is considerable leafminers spend part or all of their development variation in the form and pattern of mines produced feeding between the two surfaces of the leaf. by different leafminer species. Larvae of the birch Leafmining behavior is found among the larvae of leafminer initiate several individual linear mines in certain moths, sawflies, flies and beetles. The the leaf which eventually coalesce to form a blotch. majority of leafminers damaging trees and woody Leafmining can combine with gall-making, stem- ornamentals are moth larvae; most leafminers boring, leaf-rolling and case-bearing damage in some attacking herbaceous perennials are fly larvae in the species. For example, the azalea leafminer produces family Agromyzidae. blotch-like mines for the first half of its larval life, then exits the mine and feeds as a leaf-roller or leaf- Moth females whose larvae are leafminers usually tier. lay their eggs on the leaf surface. Females of the azalea leafminer lay eggs individually on the Leafmining larvae may pupate in the mine, elsewhere undersides of leaves or along the midrib or vein. All on the plant, or in the ground, depending on species.
    [Show full text]
  • Proliferating Bacterial Symbionts on House Fly Eggs Affect Oviposition
    ANIMAL BEHAVIOUR, 2007, 74,81e92 doi:10.1016/j.anbehav.2006.11.013 Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies KEVIN LAM, DARON BABOR, BRUCE DUTHIE, ELISA-MARIE BABOR, MARGO MOORE & GERHARD GRIES Department of Biological Sciences, Simon Fraser University (Received 13 July 2006; initial acceptance 26 August 2006; final acceptance 28 November 2006; published online 14 June 2007; MS. number: A10510) Animals commonly leave scent messages by depositing pheromones, faeces, or urine. The intensity of a chemical message may fade over time, but the ‘intention’ remains the same. We argue that house flies, Musca domestica (Diptera: Muscidae), require a message with evolving (sensu changing over time) informa- tion content. Gravid females reportedly deploy a pheromone that induces concerted oviposition so that many even-aged larvae ameliorate the resource, such as animal manure. However, continued oviposition by late-arriving females may result in age disparity and cannibalism of larval offspring. Thus, we predicted that house flies have a type of cue that evolves from oviposition induction to inhibition some time after eggs are deposited on a resource. Here we show (1) the existence of such evolving ovipositional cues, (2) the adverse fitness consequences that accrue from ignoring the inhibitory cues and (3) the mechanism by which these cues evolve. The evolving cues depend upon a key bacterial strain, Klebsiella oxytoca, which originates with female M. domestica and which proliferates over time on the surface of deposited eggs. At a threshold density of this strain, further oviposition is inhibited. By deploying such evolving cues, female M.
    [Show full text]
  • Key and Atlas to the Genus <I>Trichocera</I> MEIGEN in Europe
    Acta zoologica cracoviensia, 64(1) 2021 e-ISSN 2300-0163 Kraków, May, 2021 https://doi.org/10.3409/azc.64.01 http://www.isez.pan.krakow.pl/en/acta-zoologica.html Zoobank Account: urn:lsid:zoobank.org:pub:9CC4F52B-9F46-43F5-8596-15019C70018E Key and atlas to the genus Trichocera MEIGEN in Europe (Diptera, Trichoceridae) Ewa KRZEMIÑSKA Received: 10 April 2021. Accepted: 20 May 2021. Available online: 31 May 2021. Issue online: 31 May 2021. Original article KRZEMIÑSKA E. 2021. Key and atlas to the genus Trichocera MEIGEN in Europe (Diptera, Trichoceridae). Acta zool. cracov., 64(1): 1-157. Abstract. The key presents all 59 species of the genus Trichocera MEIGEN which occur in Europe. Four subgenera are represented: Trichocera MEIGEN 1803 (five species), Metatrichocera DAHL 1967 (seven species), Saltrichocera KRZEMIÑSKA 2002 (35 species), and Staryia KRZEMIÑSKA &GORZKA 2016 (13 species). The type material of two species, one from North America and one from Asia, are described (Trichocera columbiana ALEXANDER, 1927 and T. arctica LUNDSTRÖM, 1915), whose identities cause some problems and whose presence in the northern regions of Europe is possible. Two new species are described, Trichocera (Saltrichocera) longa, n. sp., and T.(Staryia) oulankae,n.sp. Trichocera versicolor is resurrected from synonymy; T. limpidipennis is synonymized with T. regelationis. There are separate keys to males and females; species are illustrated with camera pictures of diagnostic features: genitalia, antennae, and male tarsal claws, and additionally, wings and thoraces when only one sex is known, to enable further search. The state of knowledge of the genus in Europe and in the world is discussed.
    [Show full text]
  • Diptera: Agromyzidae) Inferred from Sequence Data from Multiple Genes
    Molecular Phylogenetics and Evolution 42 (2007) 756–775 www.elsevier.com/locate/ympev Phylogenetic relationships within the leaf-mining Xies (Diptera: Agromyzidae) inferred from sequence data from multiple genes Sonja J. ScheVer a,¤, Isaac S. Winkler b, Brian M. Wiegmann c a Systematic Entomology Laboratory, USDA, Agricultural Research Service, Beltsville, MD 20705, USA b Department of Entomology, University of Maryland, College Park, MD 20740, USA c Department of Entomology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA Received 9 January 2006; revised 29 November 2006; accepted 18 December 2006 Available online 31 December 2006 Abstract The leaf-mining Xies (Diptera: Agromyzidae) are a diverse group whose larvae feed internally in leaves, stems, Xowers, seeds, and roots of a wide variety of plant hosts. The systematics of agromyzids has remained poorly known due to their small size and morphological homogeneity. We investigated the phylogenetic relationships among genera within the Agromyzidae using parsimony and Bayesian anal- yses of 2965 bp of DNA sequence data from the mitochondrial COI gene, the nuclear ribosomal 28S gene, and the single copy nuclear CAD gene. We included 86 species in 21 genera, including all but a few small genera, and spanning the diversity within the family. The results from parsimony and Bayesian analyses were largely similar, with major groupings of genera in common. SpeciWcally, both analy- ses recovered a monophyletic Phytomyzinae and a monophyletic Agromyzinae. Within the subfamilies, genera found to be monophyletic given our sampling include Agromyza, Amauromyza, Calycomyza, Cerodontha, Liriomyza, Melanagromyza, Metopomyza, Nemorimyza, Phytobia, and Pseudonapomyza. Several genera were found to be polyphyletic or paraphyletic including Aulagromyza, Chromatomyia, Phytoliriomyza, Phytomyza, and Ophiomyia.
    [Show full text]
  • Dipterists Digest: Contents 1988–2021
    Dipterists Digest: contents 1988–2021 Latest update at 12 August 2021. Includes contents for all volumes from Series 1 Volume 1 (1988) to Series 2 Volume 28(2) (2021). For more information go to the Dipterists Forum website where many volumes are available to download. Author/s Year Title Series Volume Family keyword/s EDITOR 2021 Corrections and changes to the Diptera Checklist (46) 2 28 (2): 252 LIAM CROWLEY 2021 Pandivirilia melaleuca (Loew) (Diptera, Therevidae) recorded from 2 28 (2): 250–251 Therevidae Wytham Woods, Oxfordshire ALASTAIR J. HOTCHKISS 2021 Phytomyza sedicola (Hering) (Diptera, Agromyzidae) new to Wales and 2 28 (2): 249–250 Agromyzidae a second British record Owen Lonsdale and Charles S. 2021 What makes a ‘good’ genus? Reconsideration of Chromatomyia Hardy 2 28 (2): 221–249 Agromyzidae Eiseman (Diptera, Agromyzidae) ROBERT J. WOLTON and BENJAMIN 2021 The impact of cattle on the Diptera and other insect fauna of a 2 28 (2): 201–220 FIELD temperate wet woodland BARRY P. WARRINGTON and ADAM 2021 The larval habits of Ophiomyia senecionina Hering (Diptera, 2 28 (2): 195–200 Agromyzidae PARKER Agromyzidae) on common ragwort (Jacobaea vulgaris) stems GRAHAM E. ROTHERAY 2021 The enigmatic head of the cyclorrhaphan larva (Diptera, Cyclorrhapha) 2 28 (2): 178–194 MALCOLM BLYTHE and RICHARD P. 2021 The biting midge Forcipomyia tenuis (Winnertz) (Diptera, 2 28 (2): 175–177 Ceratopogonidae LANE Ceratopogonidae) new to Britain IVAN PERRY 2021 Aphaniosoma melitense Ebejer (Diptera, Chyromyidae) in Essex and 2 28 (2): 173–174 Chyromyidae some recent records of A. socium Collin DAVE BRICE and RYAN MITCHELL 2021 Recent records of Minilimosina secundaria (Duda) (Diptera, 2 28 (2): 171–173 Sphaeroceridae Sphaeroceridae) from Berkshire IAIN MACGOWAN and IAN M.
    [Show full text]