Amorphous-Amorphous Phase Separation in API/Polymer Formulations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen. -
Phase Diagrams and Phase Separation
Phase Diagrams and Phase Separation Books MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon P Haasen, Physical Metallurgy, G Strobl, The Physics of Polymers, Springer Introduction Mixing two (or more) components together can lead to new properties: Metal alloys e.g. steel, bronze, brass…. Polymers e.g. rubber toughened systems. Can either get complete mixing on the atomic/molecular level, or phase separation. Phase Diagrams allow us to map out what happens under different conditions (specifically of concentration and temperature). Free Energy of Mixing Entropy of Mixing nA atoms of A nB atoms of B AM Donald 1 Phase Diagrams Total atoms N = nA + nB Then Smix = k ln W N! = k ln nA!nb! This can be rewritten in terms of concentrations of the two types of atoms: nA/N = cA nB/N = cB and using Stirling's approximation Smix = -Nk (cAln cA + cBln cB) / kN mix S AB0.5 This is a parabolic curve. There is always a positive entropy gain on mixing (note the logarithms are negative) – so that entropic considerations alone will lead to a homogeneous mixture. The infinite slope at cA=0 and 1 means that it is very hard to remove final few impurities from a mixture. AM Donald 2 Phase Diagrams This is the situation if no molecular interactions to lead to enthalpic contribution to the free energy (this corresponds to the athermal or ideal mixing case). Enthalpic Contribution Assume a coordination number Z. Within a mean field approximation there are 2 nAA bonds of A-A type = 1/2 NcAZcA = 1/2 NZcA nBB bonds of B-B type = 1/2 NcBZcB = 1/2 NZ(1- 2 cA) and nAB bonds of A-B type = NZcA(1-cA) where the factor 1/2 comes in to avoid double counting and cB = (1-cA). -
Phase Separation Phenomena in Solutions of Polysulfone in Mixtures of a Solvent and a Nonsolvent: Relationship with Membrane Formation*
Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation* J. G. Wijmans, J. Kant, M. H. V. Mulder and C. A. Smolders Department of Chemical Technology, Twente University of Technology, PO Box 277, 7500 AE Enschede, The Netherlands (Received 22 October 1984) The phase separation phenomena in ternary solutions of polysulfone (PSI) in mixtures of a solvent and a nonsolvent (N,N-dimethylacetamide (DMAc) and water, in most cases) are investigated. The liquid-liquid demixing gap is determined and it is shown that its location in the ternary phase diagram is mainly determined by the PSf-nonsolvent interaction parameter. The critical point in the PSf/DMAc/water system lies at a high polymer concentration of about 8~o by weight. Calorimetric measurements with very concentrated PSf/DMAc/water solutions (prepared through liquid-liquid demixing, polymer concentration of the polymer-rich phase up to 60%) showed no heat effects in the temperature range of -20°C to 50°C. It is suggested that gelation in PSf systems is completely amorphous. The results are incorporated into a discussion of the formation of polysulfone membranes. (Keywords: polysulfone; solutions; liquid-liquid demixing; crystallization; membrane structures; membrane formation) INTRODUCTION THEORY The field of membrane filtration covers a broad range of Membrane formation different separation techniques such as: hyperfiltration, In the phase inversion process a membrane is made by reverse osmosis, ultrafiltration, microfiltration, gas sepa- casting a polymer solution on a support and then bringing ration and pervaporation. Each process makes use of the solution to phase separation by means of solvent specific membranes which must be suited for the desired outflow and/or nonsolvent inflow. -
Bose-Einstein Condensation Measurements and Superflow in Condensed Helium
JLowTempPhys DOI 10.1007/s10909-013-0855-0 Bose-Einstein Condensation Measurements and Superflow in Condensed Helium H.R. Glyde Received: 9 November 2012 / Accepted: 18 January 2013 © Springer Science+Business Media New York 2013 Abstract We review the formulation and measurement of Bose-Einstein condensa- tion (BEC) in liquid and solid helium. BEC is defined for a Bose gas and subsequently for interacting systems via the one-body density matrix (OBDM) valid for both uni- form and non-uniform systems. The connection between the phase coherence created by BEC and superflow is made. Recent measurements show that the condensate frac- tion in liquid 4He drops from 7.25 ± 0.75 % at saturated vapor pressure (p ≈ 0) to 2.8 ± 0.2 % at pressure p = 24 bars near the solidification pressure (p = 25.3 bar). Extrapolation to solid densities suggests a condensate fraction in the solid of 1 % or less, assuming a frozen liquid structure such as an amorphous solid. Measurements in the crystalline solid have not been able to detect a condensate with an upper limit 4 set at n0 ≤ 0.3 %. Opportunities to observe BEC directly in liquid He confined in porous media, where BEC is localized to patches by disorder, and in amorphous solid helium is discussed. Keywords Solid · Liquid · Helium · BEC · OBDM · Neutron scattering 1 Introduction This article is part of a series motivated by reports of possible superfluidity in solid helium, initially in 2004 [1, 2]. Other articles in this series survey extensively the experiments and theory in this new field and the current status of the field. -
Partition Coefficients in Mixed Surfactant Systems
Partition coefficients in mixed surfactant systems Application of multicomponent surfactant solutions in separation processes Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Tanja Mehling aus Lohr am Main 2013 Gutachter 1. Gutachterin: Prof. Dr.-Ing. Irina Smirnova 2. Gutachterin: Prof. Dr. Gabriele Sadowski Prüfungsausschussvorsitzender Prof. Dr. Raimund Horn Tag der mündlichen Prüfung 20. Dezember 2013 ISBN 978-3-86247-433-2 URN urn:nbn:de:gbv:830-tubdok-12592 Danksagung Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Thermische Verfahrenstechnik an der TU Hamburg-Harburg. Diese Zeit wird mir immer in guter Erinnerung bleiben. Deshalb möchte ich ganz besonders Frau Professor Dr. Irina Smirnova für die unermüdliche Unterstützung danken. Vielen Dank für das entgegengebrachte Vertrauen, die stets offene Tür, die gute Atmosphäre und die angenehme Zusammenarbeit in Erlangen und in Hamburg. Frau Professor Dr. Gabriele Sadowski danke ich für das Interesse an der Arbeit und die Begutachtung der Dissertation, Herrn Professor Horn für die freundliche Übernahme des Prüfungsvorsitzes. Weiterhin geht mein Dank an das Nestlé Research Center, Lausanne, im Besonderen an Herrn Dr. Ulrich Bobe für die ausgezeichnete Zusammenarbeit und der Bereitstellung von LPC. Den Studenten, die im Rahmen ihrer Abschlussarbeit einen wertvollen Beitrag zu dieser Arbeit geleistet haben, möchte ich herzlichst danken. Für den außergewöhnlichen Einsatz und die angenehme Zusammenarbeit bedanke ich mich besonders bei Linda Kloß, Annette Zewuhn, Dierk Claus, Pierre Bräuer, Heike Mushardt, Zaineb Doggaz und Vanya Omaynikova. Für die freundliche Arbeitsatmosphäre, erfrischenden Kaffeepausen und hilfreichen Gespräche am Institut danke ich meinen Kollegen Carlos, Carsten, Christian, Mohammad, Krishan, Pavel, Raman, René und Sucre. -
Chapter 9: Other Topics in Phase Equilibria
Chapter 9: Other Topics in Phase Equilibria This chapter deals with relations that derive in cases of equilibrium between combinations of two co-existing phases other than vapour and liquid, i.e., liquid-liquid, solid-liquid, and solid- vapour. Each of these phase equilibria may be employed to overcome difficulties encountered in purification processes that exploit the difference in the volatilities of the components of a mixture, i.e., by vapour-liquid equilibria. As with the case of vapour-liquid equilibria, the objective is to derive relations that connect the compositions of the two co-existing phases as functions of temperature and pressure. 9.1 Liquid-liquid Equilibria (LLE) 9.1.1 LLE Phase Diagrams Unlike gases which are miscible in all proportions at low pressures, liquid solutions (binary or higher order) often display partial immiscibility at least over certain range of temperature, and composition. If one attempts to form a solution within that certain composition range the system splits spontaneously into two liquid phases each comprising a solution of different composition. Thus, in such situations the equilibrium state of the system is two phases of a fixed composition corresponding to a temperature. The compositions of two such phases, however, change with temperature. This typical phase behavior of such binary liquid-liquid systems is depicted in fig. 9.1a. The closed curve represents the region where the system exists Fig. 9.1 Phase diagrams for a binary liquid system showing partial immiscibility in two phases, while outside it the state is a homogenous single liquid phase. Take for example, the point P (or Q). -
Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary Or Intentional Goal in Oral Drug Delivery?
pharmaceutics Review Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Kaijie Qian 1 , Lorenzo Stella 2,3 , David S. Jones 1, Gavin P. Andrews 1,4, Huachuan Du 5,6,* and Yiwei Tian 1,* 1 Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; [email protected] (K.Q.); [email protected] (D.S.J.); [email protected] (G.P.A.) 2 Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK; [email protected] 3 David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK 4 School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China 5 Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland 6 Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, IL 60611, USA * Correspondence: [email protected] (H.D.); [email protected] (Y.T.); Tel.: +41-446339049 (H.D.); +44-2890972689 (Y.T.) Abstract: Among many methods to mitigate the solubility limitations of drug compounds, amor- Citation: Qian, K.; Stella, L.; Jones, phous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance D.S.; Andrews, G.P.; Du, H.; Tian, Y. the dissolution and bioavailability of poorly water-soluble drugs. -
Characteristics of the Solid State and Differences Between Crystalline and Amorphous Solids
IJRECE VOL. 7 ISSUE 2 Apr.-June 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) Characteristics of the Solid State and Differences between Crystalline and Amorphous Solids Anu Assistant Professor, Department of Physics, Indus Degree college, Kinana Abstract: “A crystal is a solid composed of atoms (ions or possess the unique property of being rigid. Such solids are molecules) arranged in an orderly repetitive array.” Most of known as true solids e.g., NaCl, KCl, Sugar, Ag, Cu etc. the naturally occurring solids are found to have definite On the other hand the solid which loses shape on long crystalline shapes which can be recognized easily. These are standing, flows under its own weight and is easily distorted by in large size because these are formed very slowly, thus even mild distortion force, is called pseudo solid e.g., glass, particles get sufficient time to get proper position in the pith etc. Some solids such as NaCl, sugar, sulphur etc. have crystal structure. Some crystalline solids are so small that properties not only of rigidity and incompressibility but also appear to be amorphous. But on examination under a powerful of having typical geometrical forms. These solids are called microscope they are also found to have a definite crystalline crystalline solids. In such solids there is definite arrangement shape. Such solids are known as micro-crystalline solids. of particles (atoms, ions or molecules) throughout the entire three dimensional network of a crystal. This is named as long- Key Words: Crystal, Goniometer, Amorphous solids range order. This three dimensional arrangement is called crystal lattice or space lattice. -
Phase Separation in Mixtures
Phase Separation in Mixtures 0.05 0.05 0.04 Stable 0.04 concentrations 0.03 0.03 G G ∆ 0.02 ∆ 0.02 0.01 0.01 Unstable Unstable concentration concentration 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x Separation onto phases will lower the average Gibbs energy and thus the equilibrium state is phase separated Notes Phase Separation versus Temperature Note that at higher temperatures the region of concentrations where phase separation takes place shrinks and G eventually disappears T increases ∆G = ∆U −T∆S This is because the term -T∆S becomes large at high temperatures. You can say that entropy “wins” over the potential energy cost at high temperatures Microscopically, the kinetic energy becomes x much larger than potential at high T, and the 1 x2 molecules randomly “run around” without noticing potential energy and thus intermix Oil and water mix at high temperature Notes Liquid-Gas Phase Separation in a Mixture A binary mixture can exist in liquid or gas phases. The liquid and gas phases have different Gibbs potentials as a function of mole fraction of one of the components of the mixture At high temperatures the Ggas <Gliquid because the entropy of gas is greater than that of liquid Tb2 T At lower temperatures, the two Gibbs b1 potentials intersect and separation onto gas and liquid takes place. Notes Boiling of a binary mixture Bubble point curve Dew point If we have a liquid at pint A that contains F A gas curve a molar fraction x1 of component 1 and T start heating it: E D - First the liquid heats to a temperature T’ C at constant x A and arrives to point B. -
Irreversible Transition of Amorphous and Polycrystalline Colloidal Solids Under Cyclic Deformation
PHYSICAL REVIEW E 98, 062607 (2018) Irreversible transition of amorphous and polycrystalline colloidal solids under cyclic deformation Pritam Kumar Jana,1,2,* Mikko J. Alava,1 and Stefano Zapperi1,3,4 1COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland 2Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium 3Center for Complexity and Biosystems, Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy 4CNR-ICMATE, Via R. Cozzi 53, 20125, Milano, Italy (Received 26 June 2018; published 14 December 2018) Cyclic loading on granular packings and amorphous media leads to a transition from reversible elastic behavior to an irreversible plasticity. In the present study, we investigate the effect of oscillatory shear on polycrystalline and amorphous colloidal solids by performing molecular dynamics simulations. Our results show that close to the transition, both systems exhibit enhanced particle mobility, hysteresis, and rheological loss of rigidity. However, the rheological response shows a sharper transition in the case of the polycrystalline sample as compared to the amorphous solid. In the polycrystalline system, we see the disappearance of disclinations, which leads to the formation of a monocrystalline system, whereas the amorphous system hardly shows any ordering. After the threshold strain amplitude, as we increase the strain amplitude both systems get fluid. In addition to that, particle displacements are more homogeneous in the case of polycrystalline systems as compared to the amorphous solid, mainly when the strain amplitude is larger than the threshold value. -
Liquid-Liquid Phase Separation in Concentrated Solutions of Non-Crystallizable Polymers by Spinodal Decomposition by C
Kolloid-Z. u. Z. Polymere 243, 14-20 (1971 ) From the AKZO Research Laboratories Arnhem (The ~Vetherlands) Liquid-liquid phase separation in concentrated solutions of non-crystallizable polymers by spinodal decomposition By C. A. Smolders, J. J. van Aartsen, and A. Steenbergen With 11 figures (Received June 15, 1970) Introduction We will describe here under what condi- In the past, investigations of phase separa- tions spinodal decomposition can be expect- tion in concentrated polymer solutions cen- ed for polymer solutions. A number of ob- tered first of all on the crystallization kinet- servations on phase separation in concen- ics (1) and morphology (2) of polymer crys- trated solutions of poly(2,6-dimethyl-l,4- tals growing from solutions and, secondly, phenylene ether), (PPO| Tg = 210 ~ and on the equilibrium thermodynamic proper- of an ethylene-vinyl acetate copolymer ties of liquid-liquid phase separation phe- (Elvax-40), Tg ~ 0 ~ will be reported, which nomena (3). will make it clear that spinodal decompo- Papkov and Yefimova (4) have recently sition can be realized in polymer solutions. given a classification of different types of phase separation for polymer solutions, essen- Thermodynamic considerations tially the two types mentioned above, in which they also pay some attention to the Fig. 1 a and b, gives a schematic represen- difference in final state of separation (i. e. tation of the thermodynamics of liquid- "gel" or two liquid layers) and to the mechanism of separation itself. For liquid- A Fm [~_ liquid phase separation of solutions of non- crystallizable polymers the difference in I LE -r final state is ascribed to a combined effect of the thermodynamics of the system (the width of the miscibility gap in the temperature-com- position diagram) and the flow properties of the concentrated polymer phase. -
Evidence for a Superglass State in Solid 4He
Evidence for a Superglass State in Solid 4He B. Hunt,1§ E. Pratt,1§ V. Gadagkar,1 M. Yamashita,1,2 A. V. Balatsky3 and J.C. Davis1,4 1 Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA. 2 Department of Physics, Kyoto University, Kyoto 606-8502, Japan. 3 T-Division, Center for Integrated Nanotechnologies, MS B 262, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 4 Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland, UK. §These authors contributed equally to this work. Science 324, 632 (1 May 2009) Although solid helium-4 (4He) may be a supersolid it also exhibits many phenomena unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T) and dissipation D(T) of a torsional oscillator containing solid 4He. With the appearance of the “supersolid” state, the relaxation times within f(T) and D(T) began to increase rapidly together. More importantly, the relaxation processes in both D(T) and a component of f(T) exhibited a complex synchronized ultra-slow evolution towards equilibrium. Analysis using a generalized rotational susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f was far too large. One possibility is that amorphous solid 4He represents a new form of supersolid in which dynamical excitations within the solid control the superfluid phase stiffness. A ‘classic’ supersolid (1-5) is a bosonic crystal with an interpenetrating superfluid component.