[PDF] a New Vertebrate Fauna from the Cretaceous Red Sandstone Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much. -
CPY Document
v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead. -
Two New Stegosaur Specimens from the Upper Jurassic Morrison Formation of Montana, USA
Editors' choice Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA D. CARY WOODRUFF, DAVID TREXLER, and SUSANNAH C.R. MAIDMENT Woodruff, D.C., Trexler, D., and Maidment, S.C.R. 2019. Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA. Acta Palaeontologica Polonica 64 (3): 461–480. Two partial skeletons from Montana represent the northernmost occurrences of Stegosauria within North America. One of these specimens represents the northernmost dinosaur fossil ever recovered from the Morrison Formation. Consisting of fragmentary cranial and postcranial remains, these specimens are contributing to our knowledge of the record and distribution of dinosaurs within the Morrison Formation from Montana. While the stegosaurs of the Morrison Formation consist of Alcovasaurus, Hesperosaurus, and Stegosaurus, the only positively identified stegosaur from Montana thus far is Hesperosaurus. Unfortunately, neither of these new specimens exhibit diagnostic autapomorphies. Nonetheless, these specimens are important data points due to their geographic significance, and some aspects of their morphologies are striking. In one specimen, the teeth express a high degree of wear usually unobserved within this clade—potentially illuminating the progression of the chewing motion in derived stegosaurs. Other morphologies, though not histologically examined in this analysis, have the potential to be important indicators for maturational inferences. In suite with other specimens from the northern extent of the formation, these specimens contribute to the ongoing discussion that body size may be latitudinally significant for stegosaurs—an intriguing geographical hypothesis which further emphasizes that size is not an undeviating proxy for maturity in dinosaurs. Key words: Dinosauria, Thyreophora, Stegosauria, Jurassic, Morrison Formation, USA, Montana. -
[PDF] Dinosaur Eggshell from the Red Sandstone Group of Tanzania
Journal of Vertebrate Paleontology 24(2):494±497, June 2004 q 2004 by the Society of Vertebrate Paleontology NOTE DINOSAUR EGGSHELL FROM THE RED SANDSTONE GROUP OF TANZANIA MICHAEL D. GOTTFRIED1, PATRICK M. O'CONNOR2, FRANKIE D. JACKSON3, ERIC M. ROBERTS4, and REMEGIUS CHAMI5, 1Mich- igan State University Museum, East Lansing, Michigan, 48824, [email protected]; 2College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701; 3Department of Earth Sciences, Montana State University, Bozeman, Montana, 59717; 4Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, 84112, 5Antiquities Unit, P.O. Box 2280, Dar es Salaam, Tanzania Investigations over the last several decades at Gondwanan Mesozoic Although the age of the Red Sandstone Group is poorly understood (see localities have signi®cantly expanded our knowledge of the diversity Damblon et al., 1998), a Cretaceous age is suggested at this site based and distribution of Southern Hemisphere dinosaurs. These records are on (1) the overall composition of the fauna, which includes titanosaurid? primarily based on skeletal remains, but included among them are in- sauropods and both avian and nonavian theropods, as well as osteo- stances of preserved eggshell, notably from Argentina (e.g., Calvo et glossomorph ®shes, and (2) the possibility that these deposits may be al., 1997; Chiappe et al., 1998) and India (e.g., Khosla and Sahni, 1995). approximately coeval with the Cretaceous dinosaur beds of Malawi (Ja- In general, however, dinosaur eggshell is relatively poorly known from cobs et al., 1990), which lie ca. 200 km southeast of the Mbeya region. Gondwana, and from Africa in particular. -
BGS Report, Single Column Layout
1 The Cretaceous Continental Intercalaire in central Algeria: subsurface evidence for a fluvial to aeolian 2 transition and implications for the onset of aridity on the Saharan Platform 3 A.J. Newella*, G.A. Kirbyb, J.P.R. Sorensena, A.E. Milodowskib 4 a British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK, email: [email protected] 5 b British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, UK 6 * Corresponding author 7 Abstract 8 The Lower Cretaceous Continental Intercalaire of North Africa is a terrestrial to shallow marine 9 continental wedge deposited along the southern shoreline of the Neotethys Ocean. Today it has a wide 10 distribution across the northern Sahara where it has enormous socio-economic importance as a major 11 freshwater aquifer. During the Early Cretaceous major north-south trending basement structures were 12 reactivated in response to renewed Atlantic rifting and in Algeria, faults along the El Biod-Hassi 13 Messaourd Ridge appear to have been particularly important in controlling thickness patterns of the 14 Lower Cretaceous Continental Intercalaire. Subsurface data from the Krechba gas field in Central Algeria 15 shows that the Lower Cretaceous stratigraphy is subdivided into two clear parts. The lower part (here 16 termed the In Salah Formation) is a 200 m thick succession of alluvial deposits with large meandering 17 channels, clearly shown in 3D seismic, and waterlogged flood basins indicated by lignites and gleyed, 18 pedogenic mudstones. The overlying Krechba Formation is a 500 m thick succession of quartz- 19 dominated sands and sandstones whose microstructure indicates an aeolian origin, confirming earlier 20 observations from outcrop. -
The Princeton Field Guide to Dinosaurs, Second Edition
MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M. -
The Continental Intercalaire Aquifer at the Kébili Geothermal Field, Southern Tunisia
Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 The Continental Intercalaire Aquifer at the Kébili Geothermal Field, Southern Tunisia Aissa Agoun Regional Commissariat for Agricultural Development Water Resources Departement, C.R.D.A Kébili, Kébili 4200, TUNISIA [email protected] Keywords: CI, Kébili, wells, artesian wellheads like valves and monitoring points. Also drawdown of the water level has been observed due to the ABSTRACT increasing water demands. Radiocarbon analysis has shown that radiocarbon is present at between 2 and 10 pmc which The C.I. "Continental Intercalaire" aquifer is an extensive leads to the conclusion that the water is recharged during horizontal sandstone reservoir (Neocomien: Lower the late Pleistocene 25,000 years B.P, corresponding to the Cretaceous: Purbecko-Wealdien). The CI is one of the last glaciation (Edmonds et al., 1997). Water is fossil and largest aquifers in the world covering more than 1 million 2 without actual recharge, so to preserve the trans-borderers km in Tunisia, Algeria and Libya. This aquifer covers reservoir, more research must be carried out on the aquifer. 80,000 km2 in Tunisia Full collaboration with Algerian and Libyan organizations In Kébili field in southern Tunisia, the geothermal water is is necessary in order to achieve economical and sustainable about 25 to 50 thousand years old and of sulphate chlorite future production and regional development. Long term type. The depth of the reservoir ranges from 1000 to 2800 monitoring of pressure temperature and salinity at the m. wellhead for each production well should be carried out. Any increase of drawdown during the next 20 years caused The piézométric level is about 200 meters above the by increased production will lead to environmental changes. -
Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. -
Small-Scale Post-Noachian Volcanism in the Martian Highlands? Insights from Terra Sirenum P
45th Lunar and Planetary Science Conference (2014) 1104.pdf SMALL-SCALE POST-NOACHIAN VOLCANISM IN THE MARTIAN HIGHLANDS? INSIGHTS FROM TERRA SIRENUM P. Brož1,2 and E. Hauber3 1Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic, [email protected], 2Institute of Petrology and Structural Geology, Charles University, Czech Republic 3Institute of Planetary Research, DLR, Berlin, Germany, [email protected]. Introduction: Volcanism was globally widespread on Mars in the early history of the planet, but focused with ongoing evolution on two main provinces in Tharsis and Elysium [1]. On the other hand, evidence for post-Noachian volcanism in the Martian highlands is rare outside some isolated regions (e.g., Tyrrhena and Hadriaca Montes) and, to our knowledge, few, if any, such volcanic edifices have been reported so far. It is generally thought that highland volcanism oc- curred early in Mars` history and stopped not later than ~1 Ga after planet formation [2, 3]. Several candidate locations were suggested as volcanic centers in western Gorgonum and south-eastern Atlantis basins [4], where extensive accumulations of possible volcanic deposits exist, however, these volcanic centers were not con- firmed by later studies [5, 6]. Based on our observations we report several prom- ising edifices in Terra Sirenum that might change this view. The study area is situated south of Gorgonum Fig. 1: Themis-IR day-time (upper image), night-time (mid- basin and is about 150x50 km wide. It contains two dle), and interpretational map of the study area. The thermal spectacular cones with outgoing flow-like features and contrast between the two upper images suggests the presence 3 dome-like structures (Fig. -
Geology and Vertebrate Paleontology of Western and Southern North America
OF WESTERN AND SOUTHERN NORTH AMERICA OF WESTERN AND SOUTHERN NORTH PALEONTOLOGY GEOLOGY AND VERTEBRATE Geology and Vertebrate Paleontology of Western and Southern North America Edited By Xiaoming Wang and Lawrence G. Barnes Contributions in Honor of David P. Whistler WANG | BARNES 900 Exposition Boulevard Los Angeles, California 90007 Natural History Museum of Los Angeles County Science Series 41 May 28, 2008 Paleocene primates from the Goler Formation of the Mojave Desert in California Donald L. Lofgren,1 James G. Honey,2 Malcolm C. McKenna,2,{,2 Robert L. Zondervan,3 and Erin E. Smith3 ABSTRACT. Recent collecting efforts in the Goler Formation in California’s Mojave Desert have yielded new records of turtles, rays, lizards, crocodilians, and mammals, including the primates Paromomys depressidens Gidley, 1923; Ignacius frugivorus Matthew and Granger, 1921; Plesiadapis cf. P. anceps; and Plesiadapis cf. P. churchilli. The species of Plesiadapis Gervais, 1877, indicate that Member 4b of the Goler Formation is Tiffanian. In correlation with Tiffanian (Ti) lineage zones, Plesiadapis cf. P. anceps indicates that the Laudate Discovery Site and Edentulous Jaw Site are Ti2–Ti3 and Plesiadapis cf. P. churchilli indicates that Primate Gulch is Ti4. The presence of Paromomys Gidley, 1923, at the Laudate Discovery Site suggests that the Goler Formation occurrence is the youngest known for the genus. Fossils from Member 3 and the lower part of Member 4 indicate a possible marine influence as Goler Formation sediments accumulated. On the basis of these specimens and a previously documented occurrence of marine invertebrates in Member 4d, the Goler Basin probably was in close proximity to the ocean throughout much of its existence. -
Dinosaur Species List E to M
Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon -
The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed.