Observations on the Histogenesis of Ovarian Tumors Produced in Mice by X-Rays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cryopreservation of Intact Human Ovary with Its Vascular Pedicle
del227.fm Page 1 Tuesday, May 30, 2006 12:23 PM ARTICLE IN PRESS Human Reproduction Page 1 of 12 doi:10.1093/humrep/del227 Cryopreservation of intact human ovary with its vascular pedicle Mohamed A.Bedaiwy1,2, Mahmoud R.Hussein3, Charles Biscotti4 and Tommaso Falcone1,5 1Department of Obstetrics and Gynecology, Minimally Invasive Surgery Center, The Cleveland Clinic Foundation, Cleveland, OH, USA, 5 2Department of Obstetrics and Gynecology, 3Department of Pathology, Assiut University Hospitals and School of Medicine, Assiut, Egypt and 4Anatomic Pathology Department, Minimally Invasive Surgery Center, The Cleveland Clinic Foundation, Cleveland, OH, USA 5To whom correspondence should be addressed at: Department of Obstetrics and Gynecology, A81, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA. E-mail: [email protected] 10 BACKGROUND: The aim of this study was to assess the immediate post-thawing injury to the human ovary that was cryopreserved either as a whole with its vascular pedicle or as ovarian cortical strips. MATERIALS AND METHODS: Bilateral oophorectomy was performed in two women (46 and 44 years old) undergoing vaginal hysterectomy and laparoscopic hysterectomy, respectively. Both women agreed to donate their ovaries for experimental research. In both patients, one of the harvested ovaries was sectioned and cryopreserved (by slow freezing) as ovarian cortical 15 strips of 1.0 ´ 1.0 ´ 5.0 mm3 each. The other ovary was cryopreserved intact with its vascular pedicle. After thawing 7 days later, follicular viability, histology, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick-end labelling (TUNEL) assay (to detect apoptosis) and immunoperoxidase staining (to define Bcl-2 and p53 pro- tein expression profiles) of the ovarian tissue were performed. -
Uterus – Dilation
Uterus – Dilation Figure Legend: Figure 1 Uterus - Dilation of the uterine lumen in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine horn. Figure 2 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 1). The endometrial epithelium is cuboidal. Figure 3 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine lumen, which contains flocculent, eosinophilic material. Figure 4 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 3). There is flattened epithelium and eosinophilic material in the uterine lumen. Comment: Dilation of uterine horns (Figure 1, Figure 2, Figure 3, and Figure 4) is commonly observed at necropsy, and frequently these uteri have accumulations of excessive amounts of fluid within the 1 Uterus – Dilation lumen. Uterine dilation is relatively commonly seen in both rats and mice and may be segmental. Luminal dilation may be associated with stromal polyps or occur secondarily to hormonal imbalances from ovarian cysts or to a prolonged estrus state after cessation of the estrus cycle in aged rodents. Administration of progestins, estrogens, and tamoxifen in rats has been associated with uterine dilation. Luminal dilation is normally observed at proestrus and estrus in cycling rodents and should not be diagnosed. Increased serous fluid production is part of the proestrus phase of the cycle judged by the vaginal epithelium (which shows early keratinization covered by a layer of mucified cells) and should not be diagnosed. With uterine dilation, the endometrial lining is usually attenuated or atrophic and the wall of the uterus thinned due to the increasing pressure, but in less severe cases the endometrium can be normal (Figure 2). -
Left Vaginal Obstruction and Complex Left Uterine Horn Communication in a 12 Year Old Female Barry E
Perlman et al. Obstet Gynecol cases Rev 2015, 2:7 ISSN: 2377-9004 Obstetrics and Gynaecology Cases - Reviews Case Report: Open Access Left Vaginal Obstruction and Complex Left Uterine Horn Communication in a 12 Year Old Female Barry E. Perlman*, Amy S. Dhesi and Gerson Weiss Department of Obstetrics, Gynecology and Women’s Health, Rutgers - New Jersey Medical School, Newark, USA *Corresponding author: Barry E. Perlman DO, Department of Obstetrics, Gynecology and Women’s Health, Rutgers - New Jersey Medical School, MSB E-506, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Tel: 732 233 0997, E-mail: [email protected] Transabdominal pelvic sonogram revealed two prominent uterine Abstract cornua with an endometrial thickness of 3 mm in each horn. The Obstructive Müllerian duct anomalies are an infrequently right cornu measured 11.4 x 2.0 x 3.6 cm and the left cornu measured encountered clinical problem. The use of imaging and surgical 10.4 x 2.8 x 4.1 cm. A 7 cm mass in the endocervical canal, concerning exploration allowed for diagnosis and treatment of symptoms of a for hematocolpos, represented an occlusion extending to the left complex obstructive müllerian anomaly. We present a case of a 12 vagina (Figure 1). year old female with a history of intermittent lower abdominal pain and absent left kidney who was found to have an obstructed left She underwent further imaging with two MRI studies that were vagina and complex left uterine horn communications resulting in mutually inconclusive and inconsistent in regards to her pelvic hematocolpos, hematometra, and endometriosis. -
39Th Annual Residents Paper Day and 32Nd Annual Philip J. Disaia Society Symposium Friday, May 7, 2021
Proudly presents the 39th Annual Residents Paper Day and 32nd Annual Philip J. DiSaia Society Symposium Friday, May 7, 2021 Visiting Professor and Moderator Richard J. Paulson, MD Professor of Obstetrics & Gynecology, Alia Tutor Chair in Reproductive Medicine, Chief of the Division Reproductive Endocrinology and Infertility, and Director of USC Fertility, Keck School of Medicine of USC Table of Contents CME Activity Statement ....................................................................................................................................................... 3 Disclosure Statement ........................................................................................................................................................... 4 Welcomes Our Visiting Professor and Moderator ........................................................................................................... 5 Previous Annual Residents Paper Day Visiting Professors and Moderators .................................................... 6 Acknowledgements .............................................................................................................................................................. 7 Agenda ................................................................................................................................................................................... 8 Junior Residents ...............................................................................................................................................8 -
1 Ultrasound Monitoring of Embryonic, Follicular, and Uterine
Ultrasound Monitoring of Embryonic, Follicular, and Uterine Dynamics of Early Pregnancy in the Alpaca Sara Brunsden Introduction: The alpaca, Vicuna pacos, is a member of the Camelidae family, along with llamas, guanacos, vicunas, and Bactrian and Dromedary camels. Traditionally found in the altiplano of South America, the popularity of the alpaca has caused it to spread all over the world, including here in the United States. In South America, they are predominantly used for their fleece, while the industry here revolves mainly around breeding. However, relatively little is known about the reproduction of the alpaca. It is the overall goal of this study to discover more about the gestation of the female, specifically the embryonic stage from conception to forty days of pregnancy. Like the rabbit and cat, the alpaca is an induced ovulator, meaning that the act of copulation triggers the female to ovulate. Differing information has been presented on whether alpacas have waves of follicular development similar to other mammalian species. According to studies by Bravo (1991) and Sumar (2000), the follicles grow, mature, and regress in a distinct pattern. However, a study by Donovan (2011) at the University of Massachusetts Amherst did not find a pattern of definitive follicular waves. Alpacas are considered to have a low fertility rate compared to other domesticated mammals, with the highest rate of early embryonic death (EED) occurring within the first month of pregnancy, possibly due to weak maternal fetal tissue associations (Olivera 2003). The rate of EED has been suggested to be as high as 58% (Fernandez-Baca 1970), with 44% occurring before Day 27 (Ratto 2011). -
The Ovarian and Uterine Arteries in the Chinchilla (Chinchilla Lanigera)
Article — Artikel The ovarian and uterine arteries in the chinchilla (Chinchilla lanigera) A Çevik-Demirkana*, V Özdemira and I Demirkanb from the Center for Experimental Medi- ABSTRACT cine, Research and Application, Afyon The purpose of this study was to describe arteries supplying the ovaries and uterus in the chinchilla. Five healthy adult female chinchillas were used. In order to reveal the arterial Kocatepe University, Turkey, were used network by dissecting under a stereoscopic microscope, latex coloured with red ink was in this study. The live body weight of injected through the common carotid artery. The ovaries of the chinchilla are supplied by chinchillas varied between 450 g and the arteriae ovaricae which formed end-to-end anastomoses with the cranial termination of 500 g. The animals were euthanased by 7 the arteria uterina. Soon after leaving the aorta abdominalis, the arteriae ovaricae extended the methods described by Flecknell . 2–3 mm caudolaterally, then released 1 branch and extended caudally and bifurcated into 2 Regulations of the ethical committee further branches. One of these supplied branches to fat tissue. The other branch coursed of Afyon Kocatepe University were fol- caudally and anastomosed with the arteria circumflexa ilium profunda and dispersed into fat lowed. Following euthanasia, 1 m of tissue. The arteria ovarica further subdivided into 2 rami ovaricae. The origins of the uterine heparine sodium (Nevparin, Mustafa arteries were exclusively from the left arteria iliaca externa. The arteria uterina gave a branch Nevzat, Istanbul, Turkey) was imme- to the arteria umbilicalis and consecutive branches which supplied to the ureter, urinary diately injected via the jugular vein to pre- bladder and cranial aspects of the vagina. -
Ovarian Differences Cow Mare
Animal/Dairy Science 434 Female comparative anatomy; History of Reproductive Physiology Ovarian Differences Cow Mare Sow Cow Cow, Sow, Ewe, Human Sow • Cortex on outside • Ovulation can occur on any point of the ovary Preovulatory Tertiary Follicle Mare Blood vessels and connective tissue in medulla • Inversion of the cortex and medulla • Ovulation occurs at the Ovulation Fossa Internal CL Cow Mare Rabbit, Oposum Duplex Mouse 2 Uterine Horns 2 2 Cervixes 1 Vaginas Vagina Uterine and Cervical Differences Cow Sow Mare Cow Bicornuate Sow Ewe Smaller uterine horns 1 Vagina 1 Cervix Large 1 Uterine Body uterine 2 Uterine Horns horns Bicornuate Mare Large uterine body 1 Vagina Smaller uterine horns 1 Cervix 1 Uterine Body 2 Uterine Horns Bicornuate Bitch (Canine) Queen (Feline) 1 Vagina 1 Cervix 1 Uterine Body 2 Uterine Horns Small uterine body Long uterine horns Simplex Woman Large uterine body 1 Vagina No uterine horns 1 Cervix 1 Uterine Body Human Tract Human Tract A 47-year old woman underwent a hysterectomy for excessively heavy menses. She had previously had four normal deliveries. This structure was removed, what is wrong? COW Uterine Body Internal Cervical Os • Cervix is composed of thick connective tissue • Mucus is secreted near the time of Cow has 4-5 breeding and annular rings ovulation. Cervix External Cervical Os Vagina Uterine Body Uterine Body Longitudinal Mare Folds Sow No obstacles Interdigitating pads No fornix vagina Fornix Vagina Vagina Vagina Cervical Folds Cervix FV IP Sow Mare External Genitalia Sow Mare Cow Ewe What -
A Contribution to the Morphology of the Human Urino-Genital Tract
APPENDIX. A CONTRIBUTION TO THE MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT. By D. Berry Hart, M.D., F.R.C.P. Edin., etc., Lecturer on Midwifery and Diseases of Women, School of the Royal Colleges, Edinburgh, etc. Ilead before the Society on various occasions. In two previous communications I discussed the questions of the origin of the hymen and vagina. I there attempted to show that the lower ends of the Wolffian ducts enter into the formation of the former, and that the latter was Miillerian in origin only in its upper two-thirds, the lower third being formed by blended urinogenital sinus and Wolffian ducts. In following this line of inquiry more deeply, it resolved itself into a much wider question?viz., the morphology of the human urinogenital tract, and this has occupied much of my spare time for the last five years. It soon became evident that what one required to investigate was really the early history and ultimate fate of the Wolffian body and its duct, as well as that of the Miillerian duct, and this led one back to the fundamental facts of de- velopment in relation to bladder and bowel. The result of this investigation will therefore be considered under the following heads:? I. The Development of the Urinogenital Organs, Eectum, and External Genitals in the Human Fcetus up to the end of the First Month. The Development of the Permanent Kidney is not CONSIDERED. 260 MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT, II. The Condition of these Organs at the 6th to 7th Week. III. -
More Effective Than Color Films Because Its Live Character Would Heighten the Drama of the Sublect Matter
UOCUMENV RESUME ED 031 083 56 EM 007 152 By-Balin, Howard, And Others Cross -Media Evaluation of Color T.V., Black and White TV and Color Photography in the Teaching of Endoscopy. Appendix A, Sample Schedule; Appendix B, Testing, Appendix C, Scripts, Appendix 0, Anaiyses of Covariance. Pennsylvania Hospital, Philadelphia. Spans Agency-Office of Education (OHEW), Washington, DC. Bureau of Research. Bureau No- BR -5-0802 Pub Date Sep 68 Grant - OEC -7-48-9030-288 Note-207p. MRS Price MF -$1.00 HC-S10.45 Descriptors-Audiovisual Aids,Audiovisual Communication, *Closed CircuitTelevision, Comparative Testing, Equipment Evaluation, Films, Instructional Films, *Media Research, *Medical Education, Production Techniques, *Televised Instruction, Television, Television Research, *Video Tape Recordings Based on the premise. that in situations where the subiect requires visual identification, where students cannot see the subiect physically from the standpoint of the instructor, and where there is a high dramatic impact, color and television might be significant factors in learning, a comparative evaluation was made of: color television, black and white television, color film, and conventional methods, in the study of the female organs as viewed through an endoscope. The comparison was also based on the hypotheses that color television would prove superior to black and white television in a case such as this where color is vilal to identificafion and diagnosis, and that color television would be more effective than color films because its live character would heighten the drama of the sublect matter. After three years of testing, the conclusion was that there were no significant differences in learning among the four groups of students tested,and that, to decide whether or not to use television or film in the classroom, considerations other than those of teaching effectiveness must prevail. -
In the Guinea-Pig
Observations on the loss of catecholamine fluorescence from intrauterine adrenergic nerves during pregnancy in the guinea-pig C. Bell and S. J. Malcolm Department of Physiology, University of Melbourne, Parkville, Victoria 3052, Australia Summary. During unilateral pregnancy in the guinea-pig there is loss of formaldehyde\x=req-\ induced fluorescence from the adrenergic nerves supplying the uterus and its vascula- ture. This loss occurs initially near the site of implantation at about Day 20 of gestation and spreads progressively. Implantation of wax pellets containing progesterone into the uterine lumen or the gastrocnemius muscle of virgin guinea-pigs for 7 days produced loss of fluorescence from all local adrenergic nerves. No diminution of fluorescence was seen when pellets containing oestradiol were substituted. Chronic denervation studies showed that the adrenergic axons supplying the uterus and its arteries originated from both the ovarian artery and the pelvic region. Our results suggest that loss of adrenergic fluorescence within the uterus during pregnancy is due to an effect of placental pro- gesterone which is localized to the uterus because the high concentration of proges- terone necessary to cause fluorescence loss is not attained in the systemic circulation. Introduction In some species there is, during the course of pregnancy, a progressive disappearance of the charac¬ teristic formaldehyde-induced fluorescence normally associated with the adrenergic nerves of the uterus and its arterial supply. There is also a fall in the uterine content of noradrenaline. These declines have been observed in the guinea-pig (Sjöberg, 1968), rabbit (Rosengren & Sjöberg, 1968), man (Nakanishi, McLean, Wood & Burnstock, 1968) and dog (Ryan, Clark & Brody, 1974) and Bell ( 1972) has suggested that they constitute a protective mechanism against feto-placental ischaemia during generalized maternal sympathetic activation. -
Understanding Mare Reproduction
Know how. Know now. EC271 (Revised October 2011) UNDERSTANDING MARE REPRODUCTION Kathy Anderson Extension Horse Specialist University of Nebraska–Lincoln Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska–Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. © 1994-2011, The Board of Regents of the University of Nebraska on behalf of the University of Nebraska–Lincoln Extension. All rights reserved. UNDERSTANDING MARE REPRODUCTION Kathy Anderson Extension Horse Specialist University of Nebraska–Lincoln INTRODUCTION FUNCTIONAL ANATOMY Many producers who raise horses find breeding A correctly functioning reproductive tract is es- mares rewarding, yet frustrating. Mares and stal- sential to the potential fertility of a broodmare. The lions are traditionally placed in the breeding herd tract goes through various changes as a mare exhib- due to successful performance records, with little its estrous cycles. A good working knowledge of a consideration for their reproductive capabilities. mare’s anatomy and these changes will aid in early Horses are difficult breeders with an estimated identification of potential abnormalities. These foaling rate of below 60 percent. Various factors changes can easily be monitored through rectal pal- contribute to this, including long-erratic estrous pation or ultrasound by a veterinarian. cycles and an imposed breeding season that does The rectum is located above the reproductive not coincide with the mare’s natural breeding sea- tract allowing for a noninvasive examination of the son. -
Study of the Mast Cells Distribution and Heterogeneity In
Study of the Mast Cells Distribution and Heterogeneity in Experimentally Induced Cystic Ovaries in Rats Razi, Mazdak1 Malekinejad, Hassan2 Nagafi, Gholam-Reza1 Najafpour, Ali-Reza3 Delkhosh, Fatemeh1 Sheykhzadeh, Sanaz1 Ghodraty, Sommayeh1 1Department of Histology and Embryology 2 Department of Pharmacology and Toxicology, Faculty of veterinary medicine, Urmia University, P. O. Box: 1177, Urmia, Iran 3Department of Clinical Science, Faculty of Veterinary Medicine, Azad University, Urmia Branch, Urmia, Iran Corresponding address: [email protected] KEY WORDS: Cystic ovary; mast cells; to the blood vessels in endometrium of the cortex; endometrium; perimetrium uterine and uterine horns. Mast cells were ABSTRACT located in the perimetrium around the blood vessels in the test groups. However, no mast To determine the effect of high serum cell observed in both theca interna and theca concentration of estradiol on mast cell externa of the follicles in control group. The distribution and heterogeneity in experimen- tallyinduced cystic ovary (CO), 56 mature mast cells distribution in the helium of the female rats were subjected to study. Follow- control group was significantly (P≤0.01) less ing CO induction by unilaterally ligation of than that test group. Moreover, no mast cell the ovarian artery, all rats were euthanized demonstrated in the cortex of the control on days 5, 10, 20, 30, 40, 50, and 60, and the group. Hormonal analysis showed that there ovaries were collected. The blood samples are significant decline in the progesterone were collected and serum samples were pre- and FSH concentrations and increase in the pared. The histological sections were stained estrogen and LH levels of the serum in CO with toluidine blue in order to determine the group.