Study of the Mast Cells Distribution and Heterogeneity In

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Mast Cells Distribution and Heterogeneity In Study of the Mast Cells Distribution and Heterogeneity in Experimentally Induced Cystic Ovaries in Rats Razi, Mazdak1 Malekinejad, Hassan2 Nagafi, Gholam-Reza1 Najafpour, Ali-Reza3 Delkhosh, Fatemeh1 Sheykhzadeh, Sanaz1 Ghodraty, Sommayeh1 1Department of Histology and Embryology 2 Department of Pharmacology and Toxicology, Faculty of veterinary medicine, Urmia University, P. O. Box: 1177, Urmia, Iran 3Department of Clinical Science, Faculty of Veterinary Medicine, Azad University, Urmia Branch, Urmia, Iran Corresponding address: [email protected] KEY WORDS: Cystic ovary; mast cells; to the blood vessels in endometrium of the cortex; endometrium; perimetrium uterine and uterine horns. Mast cells were ABSTRACT located in the perimetrium around the blood vessels in the test groups. However, no mast To determine the effect of high serum cell observed in both theca interna and theca concentration of estradiol on mast cell externa of the follicles in control group. The distribution and heterogeneity in experimen- tallyinduced cystic ovary (CO), 56 mature mast cells distribution in the helium of the female rats were subjected to study. Follow- control group was significantly (P≤0.01) less ing CO induction by unilaterally ligation of than that test group. Moreover, no mast cell the ovarian artery, all rats were euthanized demonstrated in the cortex of the control on days 5, 10, 20, 30, 40, 50, and 60, and the group. Hormonal analysis showed that there ovaries were collected. The blood samples are significant decline in the progesterone were collected and serum samples were pre- and FSH concentrations and increase in the pared. The histological sections were stained estrogen and LH levels of the serum in CO with toluidine blue in order to determine the group. This finding confirmed the hormonal mast cell distribution. The observation dem- changes in CO condition and may suggest onstrated that in test group mast cells were that mast cells are involved in CO induction. found in theca externa, theca interna, and It could be also concluded that there should cortex of the cystic ovaries. Observations be a sort of mutual effects on hormonal also showed that mast cells were extensively changes and the mast cells distribution in located in the helium of the treated ovaries. CO cases. Moreover, it might be suggested These cells were in the group form closed that mast cell number increasing in cortex of 124 Vol. 8, No. 2, 2010 • Intern J Appl Res Vet Med. the ovary could be counted as a biomarker system of female rats in both normal and CO indicating a cystic condition. condition to give a new approach in order INTRODUCTION to evaluate CO condition based on mast cell distribution, which in turn related closely to Mast cells, basophiles, platelets, and estrogen level in serum. Moreover, serum endothelial cells are well-known source hormonal and glucose levels also were of histamine in the ovary.1,2 Histamine has measured. been reported to regulate blood flow and vascular permeability in the ovarian tissue, MATERIALS AND METHODS along with an important role in the follicu- Fifty six female 90-days-old rats (Sprague- lar development.2,4 Previous in vitro and in Dawley) were used. The average weight vivo studies have hypothesized that there of the rats was 180 ± 10.1 g. Animals were is an association between the mast cells kept at 22 ± 2° C temperature and 12/12 degranulation, and consequently, activation hours light /dark conditions. They were fed and angiogenesis, and neovascularization.5,8 from standard rat plate and tap water. The This hypothesis is partially supported by the rats were assigned into two groups, ie, the close anatomical association between mast treatment (n = 48) and control group (n = 8), cells, the vasculature and the recruitment which had menstrual cycle of normal length of these cells during tumor growth, wound (4-5 days). The ethical concerns of current healing, and inflammation processes.9 It has study were approved by the institutional been clearly established during the last years animal care and use committee of Urmia that mast cells of the female reproductive University, which is in accordance with system are subjected to cyclical changes NRC Guide for the Care and Use of Labora- during the estrus cycle. For example, in tory Animals. the hamster ovary, mast cells mediate the The main method to determine the vascular response to the gonadotropin surge ovulation day was based on vaginal smear in proestrus stage.2 The Cyclic change in the that was conducted on 200 rats, in order number and the degranulation pattern of the to select 56 rats which that exhibited the cells during the estrus cycle have also been characteristics of ovulation day in light mi- reported in the reproductive system.10,11 It is croscopic analyses of smear slides, as well generally accepted that estradiol influence known method of the ovulation day diagno- mast cells density and more likely function, sis in rats or other rodents.19 The test group as well.12,14 was anesthetized by using the combination The CO is a common problem in the of ketamin HCl 5% (Iran- Razak), 40 mg/kg reproduction, both in veterinary and medical and xylazine 2% (Germany) 5mg/kg intra- fields. It is associated with insulin resistant, peritoneally. Then, the rats were laparato- hyperinsulinaemia, glucose intolerance, obe- mized from 1/3 caudal end of middle line sity, and altered lipid profile.15,17 High serum and when the site of ligation was exposed, concentrations of androgenic hormones and unilaterally the right ovarian artery was li- increasing of estradiol may be encountered gated by 0-2 silk and blocked completely.20 in these patients.18 The CO could be resulted Also, the rats randomly selected to make a from abnormal hormonal reaching to the sham control group, which surgery process- ovary, as well.7,14,15 It is well known that es were performed on them without ligation reproductive hormones and in particular of any artery or arteriole. On days 5, 10, 20, estradiol has influential effects on mast cells. 30, 40, 50, and 60, the rats were euthanized There is, however, a lack of knowledge as to by using CO2 gas in a special device and how CO condition can affect the mast cells both ovaries were dissected out and cleaned histological distribution and hetrogenesity. by using chilled saline normal. Hence this study carried out to examine the Histomorphological Analysis distribution of mast cells on the reproductive The ovaries were fixed in the isotonic form- Intern J Appl Res Vet Med • Vol. 8, No. 2, 2010. 125 aldehyde acetic solution (IFAA, pH 2.8). antibody position on micro-well plate. The Samples were processed through paraffin limits of detection (LOD) were 0.25mIU/ embedding and cut with rotary microtome ml, 0.3 mIU/ml, 4.5 pg/ml and 0.05 ng/ml and stained with toluidine-blue technique. for FSH, LH, estradiol and progesterone in Distribution of the mast cells was studied in ELISA test, respectively. The intra-assay the different parts of the collected organs. coefficients variance for FSH, LH, estradiol From the above mentioned section series, and progesterone were, 3.56 (for 10 times), 10 sections (each 6 µm thickness) were 2.64 (for 10times), 5.9 (for 10 times) and 4.8 randomly selected as semi- serially. Tissue (for 10 times) respectively and inter-assay samples from rats’ intestine were used as the coefficientsvariances of 8.98 (for 10 times), control for the mucosal mast cells (MMC), 7.52 (for 10 times), 5.9 (for 10 times) and while tissue from the skin of rats was used 9.9 (for 10times) were found for FSH, LH, as the control for the connective tissue mast estradiol and progesterone, respectively. cells (CTMC). Furthermore, the blood glucose was mea- Cell Count sured by an Oncull now set with test strioe 20 A hundred – square ocular micrometer was glucose. In order to measure the blood used for cell count to determine the mast cell glucose, the blood samples were sampled distribution in the preparations stained with from caudal artery and immediately put on toluidine-blue. Mast cells within ocular mi- set and measured. crometer were counted in high power field Statistical Analyses (400X).19 The cells were counted within All results are presented as means ± SD. 18 areas per tissue, selected from different Differences between mast cell numbers, regions of the ovary (cortex, medulla) and hormonal concentrations, and glucose level epithelium, tunica sub mucosa, tunica mas- in various days of treatment were analyzed cularis in the uterus and the uterine horns with a two-way ANOVA followed by a of the test group, and different regions from Bonferroni test, using GraphPad Prism 4.00, the ovaries of control group. Thus, average GraphPad Software. P < 0.05 was consid- mast cell numbers within the area covered ered significant. with 100 square ocular micrometers was RESULTS determined. The area of 100 square ocular micrometers was calculated by means of Mast cells in sections stained with toluidine micrometrical lam by 40 objective en- blue had various size and appearance. They largements. Then, the mast cell density in were oval, flat, or in the form of spindle each site (proposed tissues) was found and shape. Cytoplasms of the mast cells taken recorded as mast cell numbers /mm.2 almost from all samples and stained with metachromatic dye were homogenous. In the Serum Sampling and Hormonal Analysis present, study mast cells were observed in In order to avoid any effect of surgical the theca externa and theca interna (Fig- procedures on hormonal situ, 5 days after ure 1) of the cystic follicles. Observations surgery, the blood samples from correspond- demonstrated that mast cells were abounded ing animals were collected directly from the in the cortex of the ovary that had cystic fol- heart and the serum samples separated by licle (Figure 2).
Recommended publications
  • Uterus – Dilation
    Uterus – Dilation Figure Legend: Figure 1 Uterus - Dilation of the uterine lumen in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine horn. Figure 2 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 1). The endometrial epithelium is cuboidal. Figure 3 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine lumen, which contains flocculent, eosinophilic material. Figure 4 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 3). There is flattened epithelium and eosinophilic material in the uterine lumen. Comment: Dilation of uterine horns (Figure 1, Figure 2, Figure 3, and Figure 4) is commonly observed at necropsy, and frequently these uteri have accumulations of excessive amounts of fluid within the 1 Uterus – Dilation lumen. Uterine dilation is relatively commonly seen in both rats and mice and may be segmental. Luminal dilation may be associated with stromal polyps or occur secondarily to hormonal imbalances from ovarian cysts or to a prolonged estrus state after cessation of the estrus cycle in aged rodents. Administration of progestins, estrogens, and tamoxifen in rats has been associated with uterine dilation. Luminal dilation is normally observed at proestrus and estrus in cycling rodents and should not be diagnosed. Increased serous fluid production is part of the proestrus phase of the cycle judged by the vaginal epithelium (which shows early keratinization covered by a layer of mucified cells) and should not be diagnosed. With uterine dilation, the endometrial lining is usually attenuated or atrophic and the wall of the uterus thinned due to the increasing pressure, but in less severe cases the endometrium can be normal (Figure 2).
    [Show full text]
  • Left Vaginal Obstruction and Complex Left Uterine Horn Communication in a 12 Year Old Female Barry E
    Perlman et al. Obstet Gynecol cases Rev 2015, 2:7 ISSN: 2377-9004 Obstetrics and Gynaecology Cases - Reviews Case Report: Open Access Left Vaginal Obstruction and Complex Left Uterine Horn Communication in a 12 Year Old Female Barry E. Perlman*, Amy S. Dhesi and Gerson Weiss Department of Obstetrics, Gynecology and Women’s Health, Rutgers - New Jersey Medical School, Newark, USA *Corresponding author: Barry E. Perlman DO, Department of Obstetrics, Gynecology and Women’s Health, Rutgers - New Jersey Medical School, MSB E-506, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Tel: 732 233 0997, E-mail: [email protected] Transabdominal pelvic sonogram revealed two prominent uterine Abstract cornua with an endometrial thickness of 3 mm in each horn. The Obstructive Müllerian duct anomalies are an infrequently right cornu measured 11.4 x 2.0 x 3.6 cm and the left cornu measured encountered clinical problem. The use of imaging and surgical 10.4 x 2.8 x 4.1 cm. A 7 cm mass in the endocervical canal, concerning exploration allowed for diagnosis and treatment of symptoms of a for hematocolpos, represented an occlusion extending to the left complex obstructive müllerian anomaly. We present a case of a 12 vagina (Figure 1). year old female with a history of intermittent lower abdominal pain and absent left kidney who was found to have an obstructed left She underwent further imaging with two MRI studies that were vagina and complex left uterine horn communications resulting in mutually inconclusive and inconsistent in regards to her pelvic hematocolpos, hematometra, and endometriosis.
    [Show full text]
  • 39Th Annual Residents Paper Day and 32Nd Annual Philip J. Disaia Society Symposium Friday, May 7, 2021
    Proudly presents the 39th Annual Residents Paper Day and 32nd Annual Philip J. DiSaia Society Symposium Friday, May 7, 2021 Visiting Professor and Moderator Richard J. Paulson, MD Professor of Obstetrics & Gynecology, Alia Tutor Chair in Reproductive Medicine, Chief of the Division Reproductive Endocrinology and Infertility, and Director of USC Fertility, Keck School of Medicine of USC Table of Contents CME Activity Statement ....................................................................................................................................................... 3 Disclosure Statement ........................................................................................................................................................... 4 Welcomes Our Visiting Professor and Moderator ........................................................................................................... 5 Previous Annual Residents Paper Day Visiting Professors and Moderators .................................................... 6 Acknowledgements .............................................................................................................................................................. 7 Agenda ................................................................................................................................................................................... 8 Junior Residents ...............................................................................................................................................8
    [Show full text]
  • 1 Ultrasound Monitoring of Embryonic, Follicular, and Uterine
    Ultrasound Monitoring of Embryonic, Follicular, and Uterine Dynamics of Early Pregnancy in the Alpaca Sara Brunsden Introduction: The alpaca, Vicuna pacos, is a member of the Camelidae family, along with llamas, guanacos, vicunas, and Bactrian and Dromedary camels. Traditionally found in the altiplano of South America, the popularity of the alpaca has caused it to spread all over the world, including here in the United States. In South America, they are predominantly used for their fleece, while the industry here revolves mainly around breeding. However, relatively little is known about the reproduction of the alpaca. It is the overall goal of this study to discover more about the gestation of the female, specifically the embryonic stage from conception to forty days of pregnancy. Like the rabbit and cat, the alpaca is an induced ovulator, meaning that the act of copulation triggers the female to ovulate. Differing information has been presented on whether alpacas have waves of follicular development similar to other mammalian species. According to studies by Bravo (1991) and Sumar (2000), the follicles grow, mature, and regress in a distinct pattern. However, a study by Donovan (2011) at the University of Massachusetts Amherst did not find a pattern of definitive follicular waves. Alpacas are considered to have a low fertility rate compared to other domesticated mammals, with the highest rate of early embryonic death (EED) occurring within the first month of pregnancy, possibly due to weak maternal fetal tissue associations (Olivera 2003). The rate of EED has been suggested to be as high as 58% (Fernandez-Baca 1970), with 44% occurring before Day 27 (Ratto 2011).
    [Show full text]
  • The Ovarian and Uterine Arteries in the Chinchilla (Chinchilla Lanigera)
    Article — Artikel The ovarian and uterine arteries in the chinchilla (Chinchilla lanigera) A Çevik-Demirkana*, V Özdemira and I Demirkanb from the Center for Experimental Medi- ABSTRACT cine, Research and Application, Afyon The purpose of this study was to describe arteries supplying the ovaries and uterus in the chinchilla. Five healthy adult female chinchillas were used. In order to reveal the arterial Kocatepe University, Turkey, were used network by dissecting under a stereoscopic microscope, latex coloured with red ink was in this study. The live body weight of injected through the common carotid artery. The ovaries of the chinchilla are supplied by chinchillas varied between 450 g and the arteriae ovaricae which formed end-to-end anastomoses with the cranial termination of 500 g. The animals were euthanased by 7 the arteria uterina. Soon after leaving the aorta abdominalis, the arteriae ovaricae extended the methods described by Flecknell . 2–3 mm caudolaterally, then released 1 branch and extended caudally and bifurcated into 2 Regulations of the ethical committee further branches. One of these supplied branches to fat tissue. The other branch coursed of Afyon Kocatepe University were fol- caudally and anastomosed with the arteria circumflexa ilium profunda and dispersed into fat lowed. Following euthanasia, 1 m of tissue. The arteria ovarica further subdivided into 2 rami ovaricae. The origins of the uterine heparine sodium (Nevparin, Mustafa arteries were exclusively from the left arteria iliaca externa. The arteria uterina gave a branch Nevzat, Istanbul, Turkey) was imme- to the arteria umbilicalis and consecutive branches which supplied to the ureter, urinary diately injected via the jugular vein to pre- bladder and cranial aspects of the vagina.
    [Show full text]
  • Ovarian Differences Cow Mare
    Animal/Dairy Science 434 Female comparative anatomy; History of Reproductive Physiology Ovarian Differences Cow Mare Sow Cow Cow, Sow, Ewe, Human Sow • Cortex on outside • Ovulation can occur on any point of the ovary Preovulatory Tertiary Follicle Mare Blood vessels and connective tissue in medulla • Inversion of the cortex and medulla • Ovulation occurs at the Ovulation Fossa Internal CL Cow Mare Rabbit, Oposum Duplex Mouse 2 Uterine Horns 2 2 Cervixes 1 Vaginas Vagina Uterine and Cervical Differences Cow Sow Mare Cow Bicornuate Sow Ewe Smaller uterine horns 1 Vagina 1 Cervix Large 1 Uterine Body uterine 2 Uterine Horns horns Bicornuate Mare Large uterine body 1 Vagina Smaller uterine horns 1 Cervix 1 Uterine Body 2 Uterine Horns Bicornuate Bitch (Canine) Queen (Feline) 1 Vagina 1 Cervix 1 Uterine Body 2 Uterine Horns Small uterine body Long uterine horns Simplex Woman Large uterine body 1 Vagina No uterine horns 1 Cervix 1 Uterine Body Human Tract Human Tract A 47-year old woman underwent a hysterectomy for excessively heavy menses. She had previously had four normal deliveries. This structure was removed, what is wrong? COW Uterine Body Internal Cervical Os • Cervix is composed of thick connective tissue • Mucus is secreted near the time of Cow has 4-5 breeding and annular rings ovulation. Cervix External Cervical Os Vagina Uterine Body Uterine Body Longitudinal Mare Folds Sow No obstacles Interdigitating pads No fornix vagina Fornix Vagina Vagina Vagina Cervical Folds Cervix FV IP Sow Mare External Genitalia Sow Mare Cow Ewe What
    [Show full text]
  • In the Guinea-Pig
    Observations on the loss of catecholamine fluorescence from intrauterine adrenergic nerves during pregnancy in the guinea-pig C. Bell and S. J. Malcolm Department of Physiology, University of Melbourne, Parkville, Victoria 3052, Australia Summary. During unilateral pregnancy in the guinea-pig there is loss of formaldehyde\x=req-\ induced fluorescence from the adrenergic nerves supplying the uterus and its vascula- ture. This loss occurs initially near the site of implantation at about Day 20 of gestation and spreads progressively. Implantation of wax pellets containing progesterone into the uterine lumen or the gastrocnemius muscle of virgin guinea-pigs for 7 days produced loss of fluorescence from all local adrenergic nerves. No diminution of fluorescence was seen when pellets containing oestradiol were substituted. Chronic denervation studies showed that the adrenergic axons supplying the uterus and its arteries originated from both the ovarian artery and the pelvic region. Our results suggest that loss of adrenergic fluorescence within the uterus during pregnancy is due to an effect of placental pro- gesterone which is localized to the uterus because the high concentration of proges- terone necessary to cause fluorescence loss is not attained in the systemic circulation. Introduction In some species there is, during the course of pregnancy, a progressive disappearance of the charac¬ teristic formaldehyde-induced fluorescence normally associated with the adrenergic nerves of the uterus and its arterial supply. There is also a fall in the uterine content of noradrenaline. These declines have been observed in the guinea-pig (Sjöberg, 1968), rabbit (Rosengren & Sjöberg, 1968), man (Nakanishi, McLean, Wood & Burnstock, 1968) and dog (Ryan, Clark & Brody, 1974) and Bell ( 1972) has suggested that they constitute a protective mechanism against feto-placental ischaemia during generalized maternal sympathetic activation.
    [Show full text]
  • Understanding Mare Reproduction
    Know how. Know now. EC271 (Revised October 2011) UNDERSTANDING MARE REPRODUCTION Kathy Anderson Extension Horse Specialist University of Nebraska–Lincoln Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska–Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. © 1994-2011, The Board of Regents of the University of Nebraska on behalf of the University of Nebraska–Lincoln Extension. All rights reserved. UNDERSTANDING MARE REPRODUCTION Kathy Anderson Extension Horse Specialist University of Nebraska–Lincoln INTRODUCTION FUNCTIONAL ANATOMY Many producers who raise horses find breeding A correctly functioning reproductive tract is es- mares rewarding, yet frustrating. Mares and stal- sential to the potential fertility of a broodmare. The lions are traditionally placed in the breeding herd tract goes through various changes as a mare exhib- due to successful performance records, with little its estrous cycles. A good working knowledge of a consideration for their reproductive capabilities. mare’s anatomy and these changes will aid in early Horses are difficult breeders with an estimated identification of potential abnormalities. These foaling rate of below 60 percent. Various factors changes can easily be monitored through rectal pal- contribute to this, including long-erratic estrous pation or ultrasound by a veterinarian. cycles and an imposed breeding season that does The rectum is located above the reproductive not coincide with the mare’s natural breeding sea- tract allowing for a noninvasive examination of the son.
    [Show full text]
  • Ansc 630: Reproductive Biology 1
    ANSC 630: REPRODUCTIVE BIOLOGY 1 INSTRUCTOR: FULLER W. BAZER, PH.D. OFFICE: 442D KLEBERG CENTER EMAIL: [email protected] OFFICE PHONE: 979-862-2659 ANSC 630: INFORMATION CARD • NAME • MAJOR • ADVISOR • RESEARCH INTERESTS • PREVIOUS COURSES: – Reproductive Biology – Biochemistry – Physiology – Histology – Embryology OVERVIEW OF FUNCTIONAL REPRODUCTIVE ANATOMY: THE MAJOR COMPONENTS PARS NERVOSA PARS DISTALIS Hypothalamic Neurons Hypothalamic Neurons Melanocyte Supraoptic Stimulating Hormone Releasing Paraventricular Factor Axons Nerve Tracts POSTERIOR PITUITARY INTERMEDIATE LOBE OF (PARS NERVOSA) Oxytocin - Neurophysin PITUITARY Vasopressin-Neurophysin Melanocyte Stimulating Hormone (MSH) Hypothalamic Divisions Yen 2004; Reprod Endocrinol 3-73 Hormone Profile of the Estrous Cycle in the Ewe 100 30 30 50 15 15 GnRH (pg/ml)GnRH GnRH (pg/ml)GnRH 0 0 (pg/ml)GnRH 0 4 h 4 h 4 h PGF2α Concentration 0 5 10 16 0 Days LH FSH Estradiol Progesterone Development of the Hypophysis Dubois 1993 Reprod Mamm Man 17-50 Neurons • Cell body (soma; perikaryon) – Synthesis of neuropeptides • Cellular processes • Dendrites • Axon - Transport • Terminals – Storage and Secretion Yen 2004 Reprod Endocrinol 3-73 • Peptide neurotransmitter synthesis • Transcription – Gene transcribes mRNA • Translation – mRNA translated for protein synthesis • Maturation – post-translational processing • Storage in vesicles - Hormone secreted from vesicles Hypothalamus • Mid-central base of brain – Optic chiasma – 3rd ventricle – Mammillary body • Nuclei – Clusters of neurons • Different
    [Show full text]
  • Day 6 Urogenital System
    Day 6 Urogenital System: Urinary System The structures of the reproductive and urinary systems are often considered together as the urogenital systems, since they have common embryological origins. However, the emphasis in this dissection is on identifying the structures of the urinary tract with only a few references to contiguous reproductive structures. The anatomy of the reproductive system is studied in the next section. Identifying Organs of the Urinary System 1. Obtain your dissection specimen and place it on your dissection tray. Reflect the abdominal viscera (most importantly the small intestine) to locate the kidneys high on the dorsal body wall. Note that the kidneys in the cat, as well as in the human are retroperitoneal (behind the peritoneum). 2. Carefully remove the peritoneum, and clear away the bed of fat that invests the kidneys. Then locate the adrenal (suprarenal) glands that lie superiorly and medial to the kidneys. 3. Identify the renal artery (red latex injected), the renal vein (blue latex injected), and the ureter at the hilus region of the kidney. (You may find two renal veins leaving one kidney in the cat but not in humans). 4. Trace the ureters to the urinary bladder, a smooth muscular sac located superiorly to the small intestine. If your cat is a female, be careful not to confuse the ureters with the urine tubes, which lie superior to the bladder in the same general region. See Figure D8.1. Observe the sites where the ureters enter the bladder. How would you describe the entrance point anatomically? 5. Cut through the bladder wall, and examine the region of the uretheral exit to see if you can discern any evidence of the internal sphincter.
    [Show full text]
  • 4.1 Lecture Uterus Gross Anatomy
    Female Reproductive Anatomy Uterine tube Ovary Uterus Urinary bladder (moved aside) Vagina Urethra Hymen Vestibule The uterus (womb) https://www.youtube.com/watch?v=LUtjft-8s5k Functions 1. serves to receive the sperm 2. transports sperm from site of deposition to uterine tubes for fertilization 3. provides suitable environment for: a. implantation of the embryo b. nourishment of the embryo & fetus during pregnancy 4. provides mechanical protection of the fetus 5. expels the mature fetus at the end of pregnancy The uterus: domestic animals Uterine horns Uterine horns Uterine body Cervix Vagina Ves t i bul um The uterus: woman Fundus Lumen of uterus (cavity) of uterus Wall of uterus Body of uterus • Endometrium Ureter • Myometrium Uterine blood vessels • Perimetrium Isthmus Internal os Cervical canal External os Lateral fornix Vagina Cervix Posterior view © 2016 Pearson Education, Inc. The uterus: topography Rectum Peritoneum Perimetrium Bladder Uterus Rectouterine Round ligament pouch Vesicouterine pouch Rectum Urinary bladder Pubic symphysis Cervix Vagina Anus Uterus configuration duplex: bicornuate: rat, rabbit, guinea pig bitch, sow, cow, ewe bipartite: simplex: mare primate, human Rabbit: duplex uterus The female rabbit has a duplex uterus. This has two separate uterine horns and no uterine body. Each horn has its own cervix, and the two cervices open into a single vagina. Cow: bicornuate uterus It is characterized by a small uterine body and two long uterine horns. Fusion of the uterine horns of the cow and ewe near the uterine body gives the impression of a larger uterine body than actually exists. Cow: bicornuate uterus It is almost totally within the abdominal cavity.
    [Show full text]
  • Uterine Tube Ovary Uterus Urinary Bladder
    Female Reproductive Anatomy Uterine tube Ovary Uterus Urinary bladder (moved aside) Vagina Urethra Hymen Vestibule The Uterine tubes= fallopian tubes = oviducts Function The uterine tubes (also called Fallopian tubes or oviducts): 1. transport the ovum from the ovary to the site of fertilization 2. help transport spermatozoa, the haploid male gametes, from the site of deposition to the site of fertilization 3. provide an appropriate environment for fertilization 4. transport the fertilized ovum (embryo) to the uterine horns/uterus where implantation and further development may occur. The uterine tubes can be divided into three major parts: 1. the infundibulum 2. the ampulla 3. the isthmus Suspensory ligament of Uterine ovary (fallopian) tube Fundus Lumen of uterus Ovarian (cavity) of uterus blood vessels Uterine tube Broad ligament Ovary • Ampulla • Mesosalpinx • Isthmus • Infundibulum • Mesovarium • Mesometrium • Fimbriae Ovarian Round ligament of uterus ligament Wall of uterus Body of uterus • Endometrium Ureter • Myometrium Uterine blood vessels • Perimetrium Isthmus Internal os Uterosacral ligament Cervical canal Cardinal (lateral cervical) External os ligament Lateral fornix Vagina Cervix Posterior view © 2016 Pearson Education, Inc. 5: Infundibulum; 6: Ampulla; 7: Isthmus; 8: Tip of uterine horn. The wooden stick points to the abdominal opening of the oviduct. Infundibulum * Ampulla * Isthmus * Uterine tubes: mesosalpinx and ovarian fimbria Suspensory ligament of Uterine ovary (fallopian) tube Fundus Lumen of uterus Ovarian (cavity) of uterus blood vessels Uterine tube Broad ligament Ovary • Ampulla • Mesosalpinx • Isthmus • Infundibulum • Mesovarium • Mesometrium • Fimbriae Ovarian Round ligament of uterus ligament Wall of uterus Body of uterus • Endometrium Ureter • Myometrium Uterine blood vessels • Perimetrium Isthmus Internal os Uterosacral ligament Cervical canal Cardinal (lateral cervical) External os ligament Lateral fornix Vagina Cervix Posterior view © 2016 Pearson Education, Inc..
    [Show full text]