Trophic Interactions of Marine Sponges

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Interactions of Marine Sponges Trophic Interactions of Marine Sponges Charlotte Lucy Mortimer A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy 2020 Thesis abstract Marine communities in the Anthropocene are changing rapidly with potentially severe consequences for ecosystem functioning. Recently, there has been increased interest in the ecological role of sponges, particularly on coral reefs, driven by evidence that sponges may be less affected by this period of environmental change than other benthic organisms. The Sampela reef system in the Wakatobi Marine National Park, Indonesia, is an example of a reef that has shifted to sponge dominance following a decline in hard corals and an increase in sponge density. Previous research suggests that the Sampela reef system may support a greater abundance of spongivorous fishes relative to surrounding reefs, however, uncertainties remain regarding spongivore identity and predated sponges. In addition, little is known about how shifts towards sponge dominance affect the trophic structure of reefs. The primary aim of my thesis was to investigate sponge trophic interactions to gain insight into the way sponge- dominated reefs of the future might function. This information is essential to predict the broader functional consequences of increasing sponge dominance on reefs in the Anthropocene. In my first data chapter, I measured the functional impact of spongivorous fishes by quantifying sponge biomass consumption on Wakatobi reefs. Video analysis identified 33 species from 10 families of reef fish grazing on Xestospongia spp., although 95% of bites were taken by only 11 species. Gut content analysis indicated that Pygoplites diacanthus and Pomacanthus imperator were obligate spongivores and Pomacanthus xanthometopon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. In situ feeding observations revealed that sponges from the family Petrosiidae are preferred by P. diacanthus and Z. cornutus. Spongivores were estimated to consume 46.6 ± 18.3 g sponge 1000 m- 2 of reef day-1 and P. diacanthus had the greatest predatory impact on sponges. While estimates provided here are conservative and likely underestimate the true magnitude of spongivory on Indo- Pacific coral reefs, this chapter provides the first known estimate of reef wide sponge biomass consumption. Comparisons with published data estimating coral consumption by Chaetodontids in the Pacific suggests that biomass transferred through both pathways is similar in magnitude. Hence spongivory is an important, yet overlooked, trophic pathway on Indo-Pacific reefs. In my second data chapter, I developed genetic methods to identify sponges from the stomach contents of spongivorous angelfishes sampled in my first chapter. A range of primers and associated predator- blocking primers targeting the 18S rDNA gene were designed and tested on extracts of sponge and spongivore DNA. Sequences were successfully amplified from 14 sponges spanning 6 orders of Porifera, with the majority of samples identified belonging to the order Haplosclerida. This study is the first to successfully sequence sponges from the gut contents of spongivorous fishes. Sequence data indicated that Pygoplites diacanthus consumed sponges with considerable chemical defences and 3 exhibited significant dietary plasticity within the Porifera phylum, similar to observations of angelfishes in the Caribbean and the eastern Pacific. In my third data chapter, I used stable isotope analysis to investigate differences in consumer niche widths and trophic diversity on the sponge-dominated Sampela reef system in comparison to an adjacent, higher quality reef. I measured the stable isotope ratios of coral reef fish representing different functional feeding groups, prey items and basal carbon sources at both sites. I used isotope data to calculate the trophic position and isotopic niches of each species and performed interspecific and inter- site comparisons. The fish assemblage had a significantly lower mean trophic position at the sponge- dominated site and the majority of species had wider isotopic niches, in accordance with optimal foraging theory which supports expansion in niche widths when per capita prey is low. The fish assemblage sampled at the sponge-dominated site used a significantly lower range of resources, had lower trophic diversity and obtained more carbon from benthic production than fish from the higher quality reef site. Results indicate a simpler trophic structure at the sponge-dominated site characterised by fish with more similar diets. Whilst trophic niche expansion may facilitate population survival in the short term, it can be expected to lead to intensified competition for increasingly scarce resources. In my final data chapter, I investigated niche partitioning and organic matter contributions to co- occurring temperate sponges. I sampled the stable isotope ratios of five abundant sponge species at 10 m and 30 m at two sites at opposing ends of Doubtful Sound, Fiordland. I also used an ROV to opportunistically sample sponges at depths >50 m and measured stable isotope ratios of picoplankton (<2 µm size phytoplankton), the 2-200 µm fraction of the water column, macroalgae and terrestrial organic matter (TOM), and used isotope mixing models to estimate the contribution of carbon sources to sponge species. Sponges displayed a wide range of δ15N values spanning two trophic levels and spatial variation in sponge stable isotope ratios was not reflected by water column resources. There was a high degree of interspecific resource partitioning and comparisons of isotopic niche size suggested more diverse resource use at the Outer Fiord site for Axinella richardsoni, Cymbastela tricalyciformis and Raspailia topsenti. Surprisingly, isotopic mixing models indicated that picoplankton was not a significant carbon source for sponges, which could not be easily explained but may relate to the degradation of dissolved TOM by heterotrophic bacteria. This study found that differential use of the 2-200 µm fraction of the water column and macroalgal derived OM supports the majority of sponges in Fiordland. However, terrestrial production may support some sponges via microbial pathways where marine production is limited. In summary, species identity and angelfish foraging strategies in the Wakatobi Marine National Park were consistent with known global patterns of spongivory. Observations of feeding behaviour suggested that alternative trophic pathways involving sponge mucus or sponge detritus may also be important for 4 upper trophic levels. Low densities of spongivores at the Sampela reef system indicate that spongivores may not necessarily benefit from shifts to sponge-dominance that result in low diversity sponge assemblages dominated by one or two competitive species. Whilst sponge consumption may be an important and overlooked trophic pathway on Indo-Pacific reefs, observations from the Sampela reef system demonstrate that the range of trophic pathways originating from the base of the food web is important for maintaining trophic complexity. Hence, sponge-dominated reefs resulting from a decline in corals relative to sponges are less productive and ultimately less stable than coral-dominated reefs. 5 Acknowledgements I would like to thank my primary academic supervisor Professor James Bell for his guidance, for keeping me on track during challenging times and for putting up with me for a year longer than anticipated. Being one of James’ students has taken me to some wonderful places and I have treasured our research group field trips, which allowed me to learn new skills alongside some fantastic people. I would also like to thank my secondary academic supervisor Dr Matt Dunn for constructive feedback on my thesis and some great chats in the early stages of my PhD. Thanks also go to Sarah Bury for her invaluable technical expertise, emotional support and extensive and constructive feedback on my writing. I am very thankful for the Commonwealth Scholarship and the Victoria Doctoral Submission Scholarship which have funded me during my thesis. Thanks also go to the PADI Foundation for supporting the stable isotope research in Indonesia and to Prof. Jamal Jompa and Prof. Abdul Haris at Hasanuddin University for facilitating this research. Thanks to Operation Wallacea for their funding associated with my fieldwork in Indonesia, covering travel expenses, diving, food and accommodation. I would particularly like to thank Pippa and Ro for their hard work and effective management of the Hoga Island Research station, and to the Indonesian staff for being truly instrumental in the running of Hoga Island. I am indebted to the team at NIWA: Josette, Julie and Anna, who took me on as one of the team and spent their valuable time teaching me how to process stable isotope samples. Also, to the Department of Conservation team on the MV Southern Winds: Rich, Chris, Ross and Chloe, I cannot thank you enough for the diving, water sampling and the wonderful food that helped me to complete my final chapter. I owe a big debt of gratitude to Irina and Meg for their patience in teaching me molecular techniques and to Maren for helping me to troubleshoot PCR problems. To my sponge club compadres: Emily, Meg, Albi, Joe, Andy, Irina and Holly; some of the best memories I have from the past four years involve you. I could not have done it without your support, both in the field and in the pub. Finally, to my friends and family, without
Recommended publications
  • Reef Sponges of the Genus Agelas (Porifera: Demospongiae) from the Greater Caribbean
    Zootaxa 3794 (3): 301–343 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:51852298-F299-4392-9C89-A6FD14D3E1D0 Reef sponges of the genus Agelas (Porifera: Demospongiae) from the Greater Caribbean FERNANDO J. PARRA-VELANDIA1,2, SVEN ZEA2,4 & ROB W. M. VAN SOEST3 1St John's Island Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, Singapore 119227. E-mail: [email protected] 2Universidad Nacional de Colombia, Sede Caribe, Centro de Estudios en Ciencias del Mar—CECIMAR; c/o INVEMAR, Calle 25 2- 55, Rodadero Sur, Playa Salguero, Santa Marta, Colombia. E-mail: [email protected] 3Netherlands Centre for Biodiversity Naturalis, P.O.Box 9517 2300 RA Leiden, The Netherlands. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 301 Introduction . 302 The genus Agelas in the Greater Caribbean . 302 Material and methods . 303 Classification . 304 Phylum Porifera Grant, 1835 . 304 Class Demospongiae Sollas, 1875 . 304 Order Agelasida Hartman, 1980 . 304 Family Agelasidae Verrill, 1907 . 304 Genus Agelas Duchassaing & Michelotti, 1864 . 304 Agelas dispar Duchassaing & Michelotti, 1864 . 306 Agelas cervicornis (Schmidt, 1870) . 311 Agelas wiedenmayeri Alcolado, 1984. 313 Agelas sceptrum (Lamarck, 1815) . 315 Agelas dilatata Duchassaing & Michelotti, 1864 . 316 Agelas conifera (Schmidt, 1870). 318 Agelas tubulata Lehnert & van Soest, 1996 . 321 Agelas repens Lehnert & van Soest, 1998. 324 Agelas cerebrum Assmann, van Soest & Köck, 2001. 325 Agelas schmidti Wilson, 1902 .
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Relative Gut Lengths of Coral Reef Butterflyfishes (Pisces
    Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae) ML Berumen1, 2 *, MS Pratchett3, BA Goodman4 1. Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia 2. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA 3. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 4. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309 * Corresponding author: Email: [email protected] Phone: +966 544700019 Keywords: Chaetodontidae; corallivory; Papua New Guinea; relative gut length Abstract Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialisation and foraging behaviours. Introduction Relative gut lengths of vertebrates have long been studied and compared within and among species (e.g., Al-Hussaini 1949). The most common explanations for relatively longer guts in herbivores focus on the chemical defences of plants (e.g., Levin 1976; Hay and Fenical 1988), the indigestibility of plant fibre (e.g., Stevens 1989; Karasov and Martinez del Rio 2007), or the poor nutritional quality of plants as food.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Chelmon Rostratus (Linnaeus, 1758) Coradion Altivelis Mcculloch, 1916
    click for previous page 3258 Bony Fishes Chelmon rostratus (Linnaeus, 1758) En - Copperbanded butterflyfish. Maximum total length about 20 cm. Inhabits coral reefs at depths of 3 to 20 m. Feeds on crabs, worms, and other invertebrates; usually in pairs. Frequently exported through the aquarium trade. Distributed from the Andaman Sea eastward throughout the Indo-Malayan region, northward to southern Japan and the Great Barrier Reef. Coradion altivelis McCulloch, 1916 En - Highfin coralfish; Fr - Coradion à grande voile. Maximum total length about 15 cm. Inhabits outer reef slopes and drop-offs at depths of 3 to 15 m. Omnivorous; usually in pairs. Rarely exported through the aquarium trade. Distributed from the Andaman Sea eastward throughout the Indo-Malayan region, northward to southern Japan and the Great Barrier Reef. Perciformes: Percoidei: Chaetodontidae 3259 Coradion chrysozonus (Kuhl and van Hasselt in Cuvier, 1831) En - Orangebanded coralfish. Maximum total length about 15 cm. Inhabits outer reef slopes and drop-offs at depths of 3 to 15 m. Omnivorous; usually in pairs. Rarely exported through the aquarium trade. Distributed from the Andaman Sea eastward throughout the Indo-Malayan region, northward to southern Japan and the Great Barrier Reef. Coradion melanopus (Cuvier, 1831) En - Two-eyed coralfish. Maximum total length about 13 cm. Inhabits lagoons and coral reefs at depths of 3 to 15 m. Omnivorous; usually in pairs. Rarely exported through the aquarium trade. Distributed throughout the Indo-Malayan region eastward to Papua New Guinea. 3260 Bony Fishes Forcipiger flavissimus Jordan and McGregor, 1898 En - Forcepsfish; Fr - Chelmon à long bec. Maximum total length about 15 cm.
    [Show full text]
  • Centropyge, Pomacanthidae
    Galaxea, Journal of Coral Reef Studies 22: 31-36(2020) Note Filling an empty role: first report of cleaning by pygmy angelfishes (Centropyge, Pomacanthidae) Pauline NARVAEZ*1, 2, 3 and Renato A. MORAIS1, 3 1 ARC Centre of Excellence for Coral Reef Studies, 1 James Cook Drive, Townsville, Queensland 4810, Australia 2 Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia 3 College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Aus­ tralia * Corresponding author: Pauline Narvaez E­mail: [email protected] Communicated by Frederic Sinniger (Associate Editor­in­Chief) Abstract Cleaner fishes remove ectoparasites, mucus and search of ectoparasites, mucus, and dead or diseased dead tissues from other ‘client’ organisms. These mutu­ tissue (Côté 2000; Côté and Soares 2011). Cleaners have alistic interactions provide benefits for the ‘clients’ and, been classified as either dedicated or facultative, depend­ on a larger scale, maintain healthy reef ecosystems. Here, ing on their degree of reliance on cleaning interactions for we report two species of angelfishes, Centropyge bicolor accessing food (Vaughan et al. 2017). While dedicated and C. tibicen, acting as cleaners of the blue tang cleaners rely almost exclusively on cleaning, facultative Paracanthurus hepatus in an aquarium. This observation ones also exploit other food sources. In total, 208 fish and is the first time that pygmy angelfishes are recorded 51 shrimp species have been reported as either dedicated cleaning in any en vironment. This novel cleaning ob­ or facultative cleaners (Vaughan et al. 2017).
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Estimates of Sponge Consumption Rates on an Indo-Pacific Reef
    Vol. 672: 123–140, 2021 MARINE ECOLOGY PROGRESS SERIES Published August 19 https://doi.org/10.3354/meps13786 Mar Ecol Prog Ser Estimates of sponge consumption rates on an Indo-Pacific reef Charlotte Mortimer1, Matthew Dunn2, Abdul Haris3, Jamaluddin Jompa3, James Bell1,* 1School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand 2The National Institute of Water and Atmospheric Research (NIWA), Wellington 6021, New Zealand 3Universitas Hasanuddin, Department of Marine Science, Makassar 90245, Indonesia ABSTRACT: Determining predator diets is essential for understanding the strength of top-down processes and how they cascade through food webs. This is especially important for sponges, key members of benthic communities, whose dominance has increased in recent years on some coral reefs. However, the diversity of spongivorous fishes and the sponges they consume are relatively unknown. Here, we estimated sponge consumption by spongivorous fishes in the Wakatobi Marine National Park, Indonesia. We deployed cameras to identify fish biting at the dominant reef sponge Xestospongia spp. and then used gut content analysis and fish abundance estimates to quantify sponge consumption. In total, 33 species from 10 families of reef fish were identified taking bites from Xestospongia spp.; however, the 2 most prolific sponge-grazers, Ctenochaetus binotatus and Chaetodon kleinii, had no sponge in their guts, showing that for some fish, bites on sponge surfaces are not reliable evidence of sponge consumption. Gut contents indicated that Pygoplites diacanthus was an obligate spongivore, while Pomacanthus imperator, P. xanthometo- pon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. Sponge consumption by these 5 spongivores was estimated at 46.6 ± 18.3 g sponge 1000 m−2 d−1.
    [Show full text]
  • EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
    Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Effects of Coral Bleaching on Coral Reef Fish Assemblages
    Effects of Coral Bleaching on Coral Reef Fish Assemblages Nicholas A J Graham A Thesis submitted to Newcastle University for the Degree of Doctor of Philosophy School of Marine Science and Technology Supervisors: Professor Nicholas V C Polunin Professor John C Bythell Examiners: Professor Matthew G Bentley Dr Magnus Nyström First submitted: 1st July 2008 Viva-Voce: 1st September 2008 Abstract Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of climate warming to the loss of live coral cover has been well documented, the associated effects on fish have not. Such information is important as coral reef fish assemblages provide critical contributions to ecosystem function and services. This thesis assesses the medium to long term impacts of coral loss on fish assemblages in the western Indian Ocean. Feeding observations of corallivorous butterflyfish demonstrates that considerable feeding plasticity occurs among habitat types, but strong relationships exist between degree of specialisation and declines in abundance following coral loss. Furthermore, obligate corallivores are lost fairly rapidly following decline in coral cover, whereas facultative corallivores are sustained until the structure of the dead coral begins to erode. Surveys of benthic and fish assemblages in Mauritius spanning 11 years highlight small changes in both benthos and fish through time, but strong spatial trends associated with dredging and inter-specific competition. In Seychelles, although there was little change in biomass of fishery target species above size of first capture, size spectra analysis of the entire assemblage revealed a loss of smaller individuals (<30cm) and an increase in the larger individuals (>45cm).
    [Show full text]