Report on Setting Phosphorus and Nitrogen Targets to Improve Water

Total Page:16

File Type:pdf, Size:1020Kb

Report on Setting Phosphorus and Nitrogen Targets to Improve Water SETTING PHOSPHORUS AND NITROGEN TARGETS TO IMPROVE WATER QUALITY Andrew Burton and Nicole Armstrong Water Science and Watershed Management Branch December 2020 Manitoba Agriculture and Resource Development Report December 2020 SETTING PHOSPHORUS AND NITROGEN TARGETS TO IMPROVE WATER QUALITY Andrew Burton and Nicole Armstrong Water Science and Watershed Management Branch INTRODUCTION Manitoba and many other jurisdictions globally are experiencing an increase in the frequency and severity of harmful and nuisance algal blooms. Algal blooms occur in aquatic ecosystems as a result of excess nutrients in conjunction with favourable environmental conditions (e.g., warm water temperatures, calm weather conditions) (Foulon et al., 2020). Algal blooms can spoil drinking water, adversely impact recreational use of beaches, reduce property values, and damage fish and other aquatic life. In addition, algal blooms may produce and release algal toxins that are potentially harmful to humans and other mammals. In Manitoba, the most well known example is Lake Winnipeg, which has experienced increasing frequency and intensity of cyanobacterial blooms (Bunting et al., 2011; McCullough et al., 2012; Environment Canada & Manitoba Water Stewardship, 2011; Environment and Climate Change Canada & Manitoba Agriculture and Resource Development, 2020), at times covering more than 10,000 square kilometers of the lake surface area. However, other lakes across the province including Pelican, Killarney, Sandy, Stephenfield, Minnewasta, and lakes in Whiteshell Provincial Park also experience algal blooms. Manitoba also occasionally posts first and/or second level advisories in an effort to protect public health when densities of cyanobacteria or concentrations of algal toxin exceed water quality objectives. While less commonly reported, algal blooms also occur in rivers and streams in Manitoba, particularly during warm weather when flows are low. Nuisance algal blooms are often composed of various types of cyanobacteria (or blue green algae), but may also include (or be dominated by) other algal species such as green algae or attached algae such as diatoms that can grow on fisher’s nets and other submersed objects. Historically, there has been acceptance that primary productivity and algal biomass is limited by: phosphorus in freshwaters (Schindler, 1974, 1977); nitrogen in marine waters (Vitousek & Howarth, 1991; Howarth & Marino 2006); and, transitions between phosphorus and nitrogen in estuaries (Hecky & Kilham, 1988). Case studies and whole lake experiments, many of which have been conducted at the Experimental Lakes Area (ELA) over multi-decade timescales, have provided evidence that the supply of phosphorus is one of the key factors controlling eutrophication in freshwaters (Schindler, 2012; Schindler et al., 2016; Higgins et al., 2018) and that elimination of these inputs favours better water quality (Jeppesen et al., 2005; McCrackin et al., 2017). Phosphorus abatement strategies have led to water quality improvements in many freshwaters globally within varying landscapes and of varying physiological and biogeochemical characteristics (Schindler et al., 2016). However, control of phosphorus inputs has not resolved eutrophication issues in some freshwaters, which has prompted 2 further investigation into other potentially important drivers of eutrophication, particularly nitrogen pollution and internal nutrient cycling (Sterner, 2008; Paerl et al., 2016a,b). For decades, experts have debated the relative importance of reducing nitrogen to prevent symptoms of eutrophication and to protect water quality. More recently, data are available documenting water quality improvements and reduced phytoplankton biomass through load reduction of both phosphorus and nitrogen over the long-term (Köhler et al., 2005; Paerl et al., 2016b; Søndergaard et al., 2017). As a result, the strategy of reducing phosphorus alone to prevent symptoms of eutrophication has been challenged over the past two decades (Paerl et al., 2016b; Dodds & Smith, 2016; Poikane et al., 2019). The dual nitrogen and phosphorus reduction strategy is based on evidence that nitrogen can also play in important role in controlling primary productivity in a diverse array of freshwater lakes (Elser et al., 1990; Dolman et al., 2016; Paerl et al., 2018) and rivers (Dodds & Smith, 2016; Jarvie et al., 2018) and may be equally as important as phosphorus in some ecosystems (Davis et al., 2015). In addition, failure to control nitrogen inputs upstream can lead to problems in aquatic environments downstream (e.g., estuarine or coastal marine environments) where nitrogen-limiting conditions contribute to marine eutrophication (Paerl et al., 2018). As a result, there has been increasing support in the scientific community that both nitrogen and phosphorus need to be controlled to reduce algal blooms and the production of toxins in freshwater, estuarine, and coastal marine ecosystems (Conley et al., 2009; Paerl et al., 2011a, Lewis et al., 2011; Dolman et al., 2012; Smith et al., 2016; Paerl & Otten, 2016; Paerl et al., 2019; Scott et al., 2019), particularly in systems that are rich in phosphorus (Bunting et al., 2005; Leavitt et al., 2006; Swarbrick et al., 2019, 2020). Adoption of water quality criteria (or targets, benchmarks, objectives or guidelines) for both phosphorus and nitrogen to protect water quality is occurring more widely in jurisdictions around the world (Wurtsbaugh et al., 2019). For example, in 2015 the United States Environmental Protection Agency (US EPA) described the need to control both nitrogen and phosphorus to prevent eutrophication (US EPA, 2015). In addition, approximately half of the member states of the European Union (EU) incorporate both nitrogen and phosphorus criteria into management strategies to protect the ecological status, including combating nutrient enrichment, of freshwater lakes and rivers (European Water Directive, 2000; Poikane et al., 2019). Other jurisdictions in the Lake Winnipeg watershed include both nitrogen and phosphorus in their nutrient reduction strategies (for example, North Dakota and Minnesota). The Prairie Provinces Water 3 Board (which has responsibility for transboundary water quality between Alberta, Saskatchewan, and Manitoba) has set water quality objectives for phosphorus and nitrogen in transboundary rivers including those that flow directly into Lake Winnipeg. The International Joint Commission recently recommended both phosphorus and nitrogen targets and objectives for the Red River at the US/Canada border. Of note, Manitoba is a participant in both the Prairie Provinces Water Board and the International Joint Commission’s Red River work. Further, many of the larger wastewater treatment facilities across the Canadian prairies include both phosphorus and nitrogen removal (for example, Calgary and Regina). Manitoba adopted a dual nutrient management approach in the early 2000s and has continued to include both nitrogen and phosphorus in the development of nutrient reduction strategies. The Government of Manitoba is proposing a new regulation under The Water Protection Act to establish nutrient targets for Lake Winnipeg and the major tributaries flowing into the lake. As part of this process, information and science regarding nutrients and algal blooms was reviewed and a rationale for establishing nutrient targets for both nitrogen and phosphorus to improve water quality in Manitoba is summarized below. NUTRIENT TARGETS FOR NITROGEN AND PHOSPHORUS The rationale for developing nutrient targets for nitrogen and phosphorus for Lake Winnipeg and its tributaries can be summarized in nine key points: 1) Nitrogen is a pollutant and concentrations are increasing in Manitoba’s rivers and lakes. Nitrogen and phosphorus are both considered pollutants when they occur in excess and concentrations of both have generally increased in Manitoba over the past several decades. Since the early 2000s, several water quality assessments have documented changes in nutrient concentrations in surface waters across the prairie region over various timescales (Jones & Armstrong, 2001; Vecchia, 2005; Paquette, 2011; Environment Canada, 2011; PPWB, 2016; Nustad & Vecchia, 2020, among others). In 2011, a national water quality assessment found that slow moving prairie rivers upstream of Lake Winnipeg had among the highest nutrient concentrations in the country (Environment Canada, 2011). In general, analyses of historical monitoring data from the 1970s to 2015 indicate that nutrient concentrations (i.e., nitrate + nitrite, total nitrogen, total dissolved phosphorus, total phosphorus) have increased in many prairie rivers (Environment Canada, 2011; PPWB, 2016; Nustad & Vecchia, 2020). In some cases, nutrient concentrations have increased by as much as 200 percent (Jones & Armstrong, 4 2001). In some rivers and streams, increases in nitrogen concentrations have been larger than those observed for phosphorus (Jones & Armstrong, 2001). Effects of nitrogen pollution may also be more pronounced in waterbodies that already have high concentrations of phosphorus, such as many in southern Manitoba. Stable isotope analyses and paleolimnological studies have shown algae growth is more closely linked to nitrogen influx compared to phosphorus, particularly in phosphorus-rich systems (Bunting et al., 2005; Leavitt et al., 2006, Xu et al., 2010; Bogard et al., 2020). Nitrogen pollution in phosphorus-rich lakes has been shown to increase cyanobacterial production and toxicity by up to
Recommended publications
  • Long-Term Influence of Climate and Experimental Eutrophication Regimes on Phytoplankton 4 Blooms 5 6 7 Kateri R
    bioRxiv preprint doi: https://doi.org/10.1101/658799; this version posted June 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article type: Letter 2 3 Long-term influence of climate and experimental eutrophication regimes on phytoplankton 4 blooms 5 6 7 Kateri R. Salk1, Jason J. Venkiteswaran2, Raoul-Marie Couture3, Scott N. Higgins4, Michael J. 8 Paterson4, and Sherry L. Schiff5 9 10 1Nicholas School of the Environment, Duke University, Durham, North Carolina, USA 11 2Department of Geography and Environmental Studies, Wilfrid Laurier University, Ontario, 12 Canada 13 3Department of Chemistry, Université Laval, Quebec, Canada 14 4IISD Experimental Lakes Area Inc., Manitoba, Canada 15 5Department of Earth and Environmental Sciences, University of Waterloo, Ontario, Canada 16 17 18 Corresponding author: 19 Kateri Salk 20 [email protected] 21 Nicholas School of the Environment 22 Duke University 23 Durham, NC 27708 24 USA 25 26 Author Contribution Statement 27 KRS conducted modeling and analysis efforts. RMC provided expertise on model application 28 and validation. SLS and JJV provided guidance on the research questions. KRS, RMC, JJV, and 29 SLS analyzed model fit, guided scenario analysis, and provided interpretations of results. SNH 30 and MJP provided guidance on historical data analyses, model input data, and postprocessing 31 analyses. KRS wrote the manuscript, and all coauthors contributed edits to the manuscript. 32 1 bioRxiv preprint doi: https://doi.org/10.1101/658799; this version posted June 3, 2019.
    [Show full text]
  • David W. Schindler (1940–2021): Trailblazing Scientist and Advocate for the Environment RETROSPECTIVE Karen A
    RETROSPECTIVE David W. Schindler (1940–2021): Trailblazing scientist and advocate for the environment RETROSPECTIVE Karen A. Kidda,1, William F. Donahueb, Erin N. Kellyc, Peter R. Leavittd, and Heidi Swansonc On March 4th, 2021, the global aquatic sciences com- munity lost one of its most influential scientists, David W. Schindler. Dave’s landmark research that led to bet- ter protection of fresh waters around the world, his un- canny ability to identify, raise the profile of, and address key crises in aquatic sciences, and his tireless education of the public and decision makers on environmental issues have left an unmatched legacy. Throughout his monumental career, Dave’s research shone a light on the ecological crises unfolding in fresh- water ecosystems. His trailblazing approach included listening to those who were closest to the environment or a problem he was working on, particularly the wisdom of Indigenous knowledge holders, applying science in a way that was respectful of Indigenous ways of know- ing, and using research findings and his own reputa- tion to amplify their voices and effect more holistic stewardship. Much to the chagrin of some politicians and industries, Dave’s remarkable scientific acumen was matched by his tireless commitment and formida- ble ability to raise public awareness of environmental issues. For him, fresh waters had to be protected, and to do so, science had to be communicated: it was this moral conscience and modus operandi that under- pinned Dave’s decades of effecting real-world change. For many years, he was the most quoted Canadian ac- ademic in the media, a measure of his unwavering com- mitment to putting science in the public eye and one that was recognized with the Royal Canadian Institute’s David W.
    [Show full text]
  • Nutrients, Eutrophication and Harmful Algal Blooms Along the Freshwater to Marine Continuum
    Received: 18 April 2019 Revised: 22 June 2019 Accepted: 2 July 2019 DOI: 10.1002/wat2.1373 OVERVIEW Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum Wayne A. Wurtsbaugh1 | Hans W. Paerl2 | Walter K. Dodds3 1Watershed Sciences Department, Utah State University, Logan, Utah Abstract 2Institute of Marine Sciences, University of Agricultural, urban and industrial activities have dramatically increased aquatic North Carolina at Chapel Hill, Morehead nitrogen and phosphorus pollution (eutrophication), threatening water quality and City, North Carolina biotic integrity from headwater streams to coastal areas world-wide. Eutrophication 3Division of Biology, Kansas State creates multiple problems, including hypoxic “dead zones” that reduce fish and University, Manhattan, Kansas shellfish production; harmful algal blooms that create taste and odor problems and Correspondence threaten the safety of drinking water and aquatic food supplies; stimulation of Wayne A. Wurtsbaugh, Watershed Sciences Department, Utah State University, Logan, greenhouse gas releases; and degradation of cultural and social values of these Utah 94322-5210. waters. Conservative estimates of annual costs of eutrophication have indicated $1 Email: [email protected] billion losses for European coastal waters and $2.4 billion for lakes and streams in Funding information the United States. Scientists have debated whether phosphorus, nitrogen, or both NSF Konza LTER, Grant/Award Numbers: need to be reduced to control eutrophication along the freshwater to marine contin- NSF OIA-1656006, NSF DEB 1065255; uum, but many management agencies worldwide are increasingly opting for dual Dimensions of Biodiversity, Grant/Award Numbers: 1831096, 1240851; US National control. The unidirectional flow of water and nutrients through streams, rivers, Science Foundation, Grant/Award Numbers: lakes, estuaries and ultimately coastal oceans adds additional complexity, as each CBET 1230543, 1840715, OCE 9905723, of these ecosystems may be limited by different factors.
    [Show full text]
  • LEE HRENCHUK BIOLOGIST, IISD Experimental Lakes Area
    LEE HRENCHUK BIOLOGIST, IISD Experimental Lakes Area Lee is part of the fish crew at IISD-ELA. Her research focuses on monitoring and assessing the effects of a variety of environmental perturbations (including mercury deposition, cage aquaculture, endocrine disrupting chemicals, eutrophication and climate change) on fish ecology and behaviour in small, oligotrophic lakes in the boreal shield. Lee conducted aquatic field research in both the Canadian Arctic and in Antarctica before settling more permanently at IISD-ELA. Post-graduate studies included examining the accumulation of mercury in yellow perch as part of the whole-lake Mercury Experiment to Assess Atmospheric Loading In Canada and the United States (METAALICUS) at ELA. Lee is an advocate for communicating science to a broader audience and has volunteered with Fort Whyte Alive, the Manitoba Museum and Fisheries and Oceans Canada to talk about scientific ideas and environmental issues with the public. Employment Biologist (IISD Experimental Lakes Area Inc.) Supervisors: Dr. Michael Paterson, Dr. Vince Palace April 2014 to present When IISD Experimental Lakes Area (IISD-ELA) took over operation of ELA from Fisheries and Oceans Canada, I chose to leave my position with DFO and continue my research program with IISD-ELA. My experience and responsibilities at IISD-ELA are much the same as they were with DFO, conducting scientific research to assess the impacts of whole-ecosystem experiments on fish ecology and behaviour at IISD-ELA. My research has focused on monitoring the effects of a variety of environmental perturbations (including mercury deposition, cage aquaculture, endocrine disrupting chemicals, eutrophication, and climate change) on fish in small, oligotrophic lakes in the boreal shield.
    [Show full text]
  • The Atmosphere Submodel for the Assessment of Canada's Nuclear
    } * AECL CA9400058 ~ AECL Research EACL Recherche AECL-9889, COG-91-199 The Atmosphere Submodel for the Assessment of Canada's Nuclear Fuel Waste Management Concept Le sous-modele d'atmosphere pour revaluation du concept du Programme canadien de gestion des dechets de combustible nucleaire B.D. Amiro September 1992 septembre AECL RESEARCH THE ATMOSPHERE SUBMODEL FOR THE ASSESSMENT OF CANADA'S NUCLEAR FUEL WASTE HANAGEMEKT CONCEPT by 8.D. Aniro Whiteshell Laboratories Pinawa, Manitoba ROE 1L0 1992 AECL-9889 COG-91-199 LE SOUS-MODÈLE D'ATMOSPHÈRE POUR L'ÉVALUATION DU CONCEPT DU PROGRAMME CANADIEN DE GESTION DES DÉCHETS DE COMBUSTIBLE NUCLÉAIRE par B.D. Amlro RÉSUMÉ Dans le cadre du Programme canadien de gestion des déchets de combustible nucléaire, on fait de la recherche sur un concept de stockage permanent des déchets de combustible nucléaire immobilisés dans une enceinte creusée à grande profondeur dans la roche plutonlque stable. Quand les barrières de protection auront fini par se rompre dans un avenir lointain, des nucléides radioactifs et chimiquement toxiques, entraînés par les eaux souterraines, pourraient migrer de l'enceinte à la biosphère. Ils pourraient parcourir un cycle dans les eaux superficielles, le sol, l'atmosphère et la chaîne alimentaire. Entre autres, le programme vise à évaluer le mouvement des nucléides par des techniques de modélisation pour calculer la dose radio- logique aux êtres humains et la concentration de contaminants dans 1'environnement. Afin d'atteindre ces objectifs, on a réalisé un modèle de biosphère com- portant quatre sous-modèles. On décrit dans ce rapport le sous-modèle d'atmosphère et les voies par lesquelles les nucléides pourraient traverser l'atmosphère.
    [Show full text]
  • Yukon and Kuskokwim Whitefish Strategic Plan
    U.S. Fish & Wildlife Service Whitefish Biology, Distribution, and Fisheries in the Yukon and Kuskokwim River Drainages in Alaska: a Synthesis of Available Information Alaska Fisheries Data Series Number 2012-4 Fairbanks Fish and Wildlife Field Office Fairbanks, Alaska May 2012 The Alaska Region Fisheries Program of the U.S. Fish and Wildlife Service conducts fisheries monitoring and population assessment studies throughout many areas of Alaska. Dedicated professional staff located in Anchorage, Fairbanks, and Kenai Fish and Wildlife Offices and the Anchorage Conservation Genetics Laboratory serve as the core of the Program’s fisheries management study efforts. Administrative and technical support is provided by staff in the Anchorage Regional Office. Our program works closely with the Alaska Department of Fish and Game and other partners to conserve and restore Alaska’s fish populations and aquatic habitats. Our fisheries studies occur throughout the 16 National Wildlife Refuges in Alaska as well as off- Refuges to address issues of interjurisdictional fisheries and aquatic habitat conservation. Additional information about the Fisheries Program and work conducted by our field offices can be obtained at: http://alaska.fws.gov/fisheries/index.htm The Alaska Region Fisheries Program reports its study findings through the Alaska Fisheries Data Series (AFDS) or in recognized peer-reviewed journals. The AFDS was established to provide timely dissemination of data to fishery managers and other technically oriented professionals, for inclusion in agency databases, and to archive detailed study designs and results for the benefit of future investigations. Publication in the AFDS does not preclude further reporting of study results through recognized peer-reviewed journals.
    [Show full text]
  • IISD Experimental Lakes Area the World’S Freshwater Laboratory
    IISD Experimental Lakes Area The World’s Freshwater Laboratory “IISD-ELA is the place for high-impact science. It is unlike any other facility for its ability to answer the big and pressing questions.” —Dr. Karen Kidd, Canada Research Chair, Canadian Rivers Institute and University of New Brunswick In a time of growing populations and a rapidly changing climate, the world is struggling to respond to challenges to their fresh water. These challenges include the impacts of climate change, agricultural runoff, water management, contaminants such as mercury and organic pollutants, and a growing list of new chemical substances. ENTER IISD-ELA: an exceptional natural laboratory comprised of 58 small lakes and their watersheds set aside for scientific research. Located in a remote region of northwestern Ontario, Canada, it is one of the only places in the world where it is possible to conduct experiments on whole ecosystems. By manipulating these small lakes, scientists are able to examine how all aspects of the ecosystem—from the atmosphere to fish populations—respond. Findings of real-world experiments are often much more accurate than those from research conducted at smaller scales, such as in laboratories. For the last 50 years, our unique research approach has influenced billion-dollar decisions of governments and industries. It has generated more cost-effective environmental policies, regulations and management—all in the name of keeping our water clean. Algal Blooms Blanketing our Lakes Changing Climate, Algal blooms occur when too many nutrients enter a body of water, and Changing Lakes algae feed on them. Groundbreaking discoveries at IISD-ELA regarding Our scientists are mimicking which nutrients cause algal blooms led to policy changes around the conditions that could be world that restrict phosphorus entering lakes and rivers.
    [Show full text]
  • IISD Experimental Lakes Area Environmental Science Experience
    IISD-ELA High School Environmental Student Learning Experience Information for Sponsoring Teachers Dear Sponsoring Teacher, Please find below general information about an exceptional science experience you may wish to promote with some of your more capable and deserving students. Sponsoring teacher requirements are discussed in the last section. To meet our goal of providing an extraordinary experience, the organizers require a little of your time and your careful consideration regarding the students you recommend for this opportunity. Pauline Gerrard IISD-ELA Deputy Director Email: [email protected] Phone: 1 204-807-3903 This July 12-24, 2020 marks the sixth annual IISD Experimental Lakes Area Environmental Science Experience. This field course is offered for students who will be entering 11th or 12th grade in the fall of 2020. About the Science and Location The IISD Experimental Lakes Area Environmental Science Research Station (IISD-ELA), located in northwestern Ontario, is an exceptional natural laboratory composed of 58 small lakes and their watersheds set aside for scientific research. It is one of the only places in the world where it is possible to conduct experiments on whole ecosystems. This unique research program has influenced billion-dollar decisions of governments and industries and has generated many cost-effective policies, regulations and management. The science conducted by the world-class researchers at IISD-ELA has resulted in far greater understanding of environmental issues and significantly reduced human impacts on the natural world—think acid rain, eutrophication, mercury poisoning, aquaculture, oil spills and climate change. Worldwide, there is no other environmental research station like IISD-ELA.
    [Show full text]
  • The Experimental Lakes Area
    Nora J. Casson et. al. Field Trip: The Experimental Lakes Area Field trip: The Experimental Lakes Area Nora J. Casson Department of Geography, University of Winnipeg Morgen Burke Department of Geography, University of North Dakota Adrienne Ducharme Department of Geography, University of Winnipeg Brian McGregor Department of Geography, University of Winnipeg Jamie Paterson Department of Geography, University of Winnipeg Joseph Piwowar Department of Geography, University of Regina Kimberly Thomson Department of Geography, University of Winnipeg Nathan Wilson Department of Geography, Lakehead University Gregory Vandeberg Department of Geography, University of North Dakota Introduction the productivity of plants and algae in lakes, but ultimately con- sume dissolved oxygen, leading to poor water quality and fish The Experimental Lakes Area (ELA) began as a Government death. In order to understand this problem, federal scientists of Canada research station in 1968 tasked with investigating in the late 1960s sought out a remote site where lakes could be the causes of and controls on nutrient pollution in lakes. It was purposefully manipulated to assess their responses to environ- established largely in response to growing public awareness of mental stressors. The ELA is located on the Precambrian shield nuisance algal blooms in lakes located close to cities. Through- of northwestern Ontario, 35 km southeast of Kenora, Ontario. out the 1960s, the algal blooms and fish kills in lakes such as It encompasses 58 lakes designated solely for research
    [Show full text]
  • IISD Experimental Lakes Area Facility Day Tours
    IISD Experimental Lakes Area Facility Day Tours We are happy to organize private tours Access to the road is restricted for schools and independently coordinated by the Ontario Ministry for groups of 10 persons or larger. Natural Resources and Forestry (OMNRF), and requires a permit. Please coordinate with your Touring IISD-ELA tour organizer to ensure that all Our standard day tour of the IISD-ELA facility vehicles have an OMNRF permit. begins at 10:00 a.m. and may include: The IISD-ELA site is located at • A welcome presentation that gives an the end of the gravel road, 30 overview of the history of IISD-ELA and our km from the highway. Continue Our road is signed, science. straight on the main road until careful not to miss it. • A tour of our facilities and closest research you arrive. lakes including: discussions of water flow, Arrival water quality and fish sampling; tours of the chemistry and fish labs; a tour of the We ask that you arrive no later than 10:00 am for Environment Canada metrological station; a day tours. Please respect speed limits on our road hands-on netting activity to collect small fish and drive slowly past the meteorological site. We or zooplankton. would rather you be late than drive too quickly. We will meet you in the parking lot upon your arrival. • Lunch at the beach in our camp recreational area. Please pack your own lunch. We ask that Tours are free of charge, you help us to reduce waste by packing your however, as a registered lunch as waste-free as possible.
    [Show full text]
  • Watershed N Export Will Not Be Reduced Proportionally with N Input
    Accounting for N Fixation in Simple Models of Lake N Loading/export A Thesis Presented By Xiaodan Ruan to The Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science in Civil and Environmental Engineering in the field of Environmental Engineering Northeastern University Boston, Massachusetts May, 2014 1 Abstract: Coastal eutrophication, an important global environmental problem, is primarily caused by excess N and management efforts consequently focus on lowering watershed N export (e.g. by reducing fertilizer use). Simple quantitative models are needed to evaluate alternative scenarios at the watershed scale. Existing models generally assume that, for a specific lake/reservoir, a constant fraction of N loading is exported downstream. However, N fixation by cyanobacteria may increase when the external N input is reduced, which may change the (effective) fraction of N exported. Here we present a model that incorporates this process. The model is based on a steady-state mass balance with external input, output, loss/retention and N fixation, where the amount fixed is a function of the N/P ratio of the external input (i.e. when N/P is less than a threshold value, N is fixed). Three approaches are used to parameterize and evaluate the model, including microcosm lab experiments, lake field observations/budgets and lake ecosystem models. Our results suggest that N export will not be reduced proportionally with external N input, which needs to be considered when evaluating management scenarios. 2 1. Introduction 1.1. Coastal water eutrophication Eutrophication of coastal waters is an important problem that can result in degradation of water quality, hypoxia, fish kills and harmful algal blooms (HABs).
    [Show full text]
  • No Long-Term Effect of Intracoelomic Acoustic Transmitter Implantation on Survival, Growth, and Body Condition of a Long-Lived Stenotherm in the Wild
    Canadian Journal of Fisheries and Aquatic Sciences No long-term effect of intracoelomic acoustic transmitter implantation on survival, growth, and body condition of a long-lived stenotherm in the wild Journal: Canadian Journal of Fisheries and Aquatic Sciences Manuscript ID cjfas-2020-0106.R1 Manuscript Type: Article Date Submitted by the 17-Sep-2020 Author: Complete List of Authors: Hubbard, Justin; University of Toronto, Ecology and Evolutionary Biology; University of Toronto at Scarborough, Department of Biological Sciences Hickie, Brendan;Draft Environmental and Resource Studies Program, Trent University Bowman, Jeff; Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section Hrenchuk, Lee; International Institute for Sustainable Development, Blanchfield, Paul; Fisheries and Oceans Canada, Freshwater Institute Rennie, Michael; Lakehead University, Biology acoustic telemetry, surgical implantation, long-term, survivorship, Keyword: growth and condition Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : © The Author(s) or their Institution(s) Page 1 of 52 Canadian Journal of Fisheries and Aquatic Sciences 1 No long-term effect of intracoelomic acoustic transmitter implantation on survival, growth, 2 and body condition of a long-lived stenotherm in the wild 3 Justin A. G. Hubbard1,2,6,7*, Brendan E. Hickie1, Jeff Bowman3, Lee E. Hrenchuk2,5, Paul J. 4 Blanchfield2,5, Michael D. Rennie2,4 5 *Corresponding author: Justin A. G. Hubbard1 (email: [email protected]; 6 phone: 416-280-2248; Fax: 416-978-5878) 7 8 1Trent University, School of the Environment, 1600 West Bank Drive. Peterborough, ON Canada 9 K9L 0G2. Brendan E. Hickie (email: [email protected]) 10 2IISD Experimental Lakes Area, 111 LombardDraft Avenue, Suite 325.
    [Show full text]