Aquatic Ecology Provincial Resources

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic Ecology Provincial Resources MANITOBA ENVIROTHON AQUATIC ECOLOGY PROVINCIAL RESOURCES !1 ACKNOWLEDGEMENTS We would like to thank: Olwyn Friesen (PhD Ecology) for compiling and editing this document. Subject Experts and Editors: Barbara Fuller (Project Editor, Chair of Test Writing and Education Committee) Lindsey Andronak (Soils, Research Technician, Agriculture and Agri-Food Canada) Jennifer Corvino (Wildlife Ecology, Senior Park Interpreter, Spruce Woods Provincial Park) Cary Hamel (Plant Ecology, Director of Conservation, Nature Conservancy Canada) Lee Hrenchuk (Aquatic Ecology, Biologist, IISD Experimental Lakes Area) Justin Reid (Integrated Watershed Management, Manager, La Salle Redboine Conservation District) Jacqueline Monteith (Climate Change in the North, Science Consultant, Frontier School Division) SPONSORS !2 Physical and Chemical Properties of Water ..................................................10 Boiling and freezing ...............................................................................................................11 Thermal properties .................................................................................................................11 Surface tension ......................................................................................................................12 Molecules in motion ...............................................................................................................12 Universal solvent ....................................................................................................................13 Hydrologic Cycle ...........................................................................................13 Evaporation (liquid to gas) .....................................................................................................14 Transpiration (liquid to gas from plants) ..................................................................................14 Condensation (vapour to liquid) .............................................................................................14 Precipitation (liquid or solid) ...................................................................................................14 Runoff ...................................................................................................................................14 Percolation ............................................................................................................................15 Groundwater .........................................................................................................................15 Water table ...........................................................................................................................15 Water-Climate Relationship .....................................................................................15 Snow, Ice, and Glaciers ................................................................................16 Snow ......................................................................................................................16 Physical properties of snow ....................................................................................................17 Ice.......................................................................................................................... 18 Sea Ice .................................................................................................................................19 Glaciers .................................................................................................................20 Polar hydrologic cycle .............................................................................................20 Types of water bodies ..................................................................................21 Streams and watersheds ..............................................................................22 Drainage Patterns and Watersheds ..........................................................................23 Watersheds in Manitoba ........................................................................................................24 Shaping the Landscape ...........................................................................................25 Erosion and Sedimentation .....................................................................................................26 Measuring stream flow ............................................................................................27 Aquatic Ecology and Ecosystems ..................................................................28 Trophic Ecology ......................................................................................................29 Photosynthesis and respiration ................................................................................................29 !3 Biological communities ............................................................................................29 Trophic levels ..........................................................................................................31 Food webs ..............................................................................................................32 Primary Producers (Autotrophs) ..............................................................................................32 Algal blooms .........................................................................................................................34 Consumers (Heterotrophs) .....................................................................................................35 Stream Ecology ............................................................................................37 What a stream carriers ............................................................................................37 Stream Life .............................................................................................................38 Riparian corridors ...................................................................................................39 Floods ....................................................................................................................39 Human impacts on streams ......................................................................................40 Dams and water storage ........................................................................................................40 Channelizing streams .............................................................................................................40 Development .........................................................................................................................41 Mobilization of sediment ........................................................................................................41 Lake Ecology ................................................................................................42 Formation and history .............................................................................................43 Lake Variability .......................................................................................................44 Light .......................................................................................................................44 Density stratification ................................................................................................45 Spring (mixed) ......................................................................................................................46 Summer (stratified) ................................................................................................................46 Autumn (mixed)..................................................................................................................... 47 Winter (weakly stratified) .......................................................................................................48 Mixing patterns .....................................................................................................................49 Lake Watersheds .....................................................................................................49 Lake chemistry ........................................................................................................50 Dissolved Oxygen (DO)......................................................................................................... 50 Physical Structure of Lakes .......................................................................................52 Spatial zones ........................................................................................................................53 Light zones............................................................................................................................ 53 Trophic status of lakes ..............................................................................................54 Oligotrophic lakes .................................................................................................................54 !4 Eutrophic lakes ......................................................................................................................55 Mesotrophic lakes .................................................................................................................55 Eutrophication .......................................................................................................................56
Recommended publications
  • Insect Diapause: a Review
    Journal of Agricultural Science and Technology A 7 (2017) 456-475 doi: 10.17265/2161-6256/2017.07.002 D DAVID PUBLISHING Insect Diapause: A Review Harsimran Kaur Gill1, Gaurav Goyal2 and Gurminder Chahil3 1. Department of Entomology, University of Florida, Gainesville, FL 32611, USA 2. Technical Agronomist, Monsanto, St. Louis, MO 63167, USA 3. Agriculture Extension Coordinator, Manitoba Agriculture, Swan River, MB R0L 0Z0, Canada Abstract: Diapause is defined as a period of suspended development in insects and other invertebrates during unfavorable environmental conditions. Diapause is commonly confused with term “quiescence” as both are dormant development stages. Here this paper aimed to review the research work done on different aspects of diapause. Attempt was made to explain definitions of diapause, incidence, stages and termination of diapause, genetic control, factors affecting diapauses, including temperature, photoperiod, moisture and food, etc.. Key words: Diapause, quiescence, diapauses theory, stages of diapauses, genetic control, biotic and abiotic factors, insects. 1. Introduction embryonic, larval, pupal or adult stages. For example, silkworm moth (Bombyx mori) overwinters in embryo Diapause is an important adaptation in many insect stage, just before segmentation. The gypsy moth species enabling them to sustain in regions which (Lymantia dispar) enters diapause as a fully formed would otherwise be unfavorable for permanent larva with hatching occurring immediately after habitation, and to maintain high numbers in an diapause ends. Obligate diapause is often universal, environment which might otherwise support only a resulting in strictly univoltine life cycle with every low population [1]. The term “diapause” was applied individual in every generation experiencing diapause, by Wheeler [2] to egg stage of grasshopper, irrespective of any possible environmental variations.
    [Show full text]
  • Aquatic Ecosystems
    February 19, 2014 Nantahala and Pisgah NFs Assessment Aquatic Ecosystems The overall richness of North Carolina’s aquatic fauna is directly related to the geomorphology of the state, which defines the major drainage divisions and the diversity of habitats found within. There are seventeen major river basins in North Carolina. Five western basins are part of the Interior Basin (IB) and drain to the Mississippi River and the Gulf of Mexico (Hiwassee, Little Tennessee, French Broad, Watauga, and New). Parts of these five river basins are within the Nantahala and Pisgah National Forests (NFs). Twelve central and eastern basins are part of the Atlantic Slope (AS) and flow to the Atlantic Ocean. Of these twelve central and eastern basins, parts of the Savannah, Broad, Catawba, and Yadkin-Pee Dee basins are within the Nantahala and Pisgah NFs. As described later in this report, the Nantahala and Pisgah NFs, for the most part, support higher elevation coldwater streams, and relatively little cool- and warmwater resources. To gain perspective on the importance of aquatic ecosystems on the Nantahala and Pisgah NFs, it is first necessary to understand their value at regional and national scales. The southeastern United States has the highest aquatic species diversity in the entire United States (Burr and Mayden 1992; Williams et al. 1993; Taylor et al. 1996; Warren et al. 2000,), with southeastern fishes comprising 62% of the United States fauna, and nearly 50% of the North American fish fauna (Burr and Mayden 1992). Freshwater mollusk diversity in the southeast is ‘globally unparalleled’, representing 91% of all United States mussel species (Neves et al.
    [Show full text]
  • Download (Pdf, 5.07
    THE HERPETOLOGICAL BULLETIN The Herpetological Bulletin is produced quarterly and publishes, in English, a range of articles concerned with herpetology. These include full-length papers, new methodologies, short communications, natural history notes and book reviews. Emphasis is placed on field studies, conservation, veterinary and behavioural aspects. Authors should read and adhere to the British Ecological Society’s Ethical Policy and Guidelines, a full version of which can be found at https://www.thebhs.org/info-advice/134-bhs-ethics-policy or The Herpetological Bulletin (2017), 141: 46- 18. All submissions are liable to assessment by the editorial board for ethical considerations, and publication may be refused on the recommendation of this committee. Contributors may therefore need to justify killing or the use of other animal procedures, if these have been involved in the execution of the work. Likewise, work that has involved the collection of endangered species or disturbance to their habitat(s) will require full justification. Articles reporting the results of experimental research, descriptions of new taxa, or taxonomic revisions should be submitted to The Herpetological Journal (see inside back cover for Editor’s address). Guidelines for Contributing Authors: 1. See the BHS website for a free download of the Bulletin showing Bulletin style. A template is available from the BHS website www.thebhs.org or on request from the Editor. 2. Contributions should be submitted by email to [email protected]. 3. Articles should be arranged in the following general order: Title Name(s) of authors(s) Address(es) of author(s) (please indicate corresponding author) Abstract (required for all full research articles - should not exceed 10% of total word length) Text acknowledgements References Appendices Footnotes should not be included.
    [Show full text]
  • Aquatic Ecology ______INTRODUCTION
    Aquatic Ecology ________________________________________________________________ INTRODUCTION Aquatic Ecology Field Station Aquatics or aquatic ecology is the study of animals and plants in freshwater environments. In addition to the many common aquatic species in this Western New York region, a student of aquatics learns about watersheds, wetlands and the hydrologic cycle. Essential to understanding and appreciating the field of aquatics is a basic knowledge of the physical and chemical properties of water. Water is arguably the most valuable substance on the planet, and is the common name applied to the liquid state of the hydrogen oxygen compound H2O. It covers 70% of the surface of the Earth forming swamps, lakes, rivers, and oceans. Pure water has a blue tint, which may be detected only in layers of considerable depth. It has no taste or odor. Water molecules are strongly attracted to one another through their two hydrogen atoms. At the surface, this attraction produces a tight film over the water (surface tension). A number of organisms live both on the upper and lower sides of this film. 1 Density of water is greatest at 39.2° Fahrenheit (4° Celsius). It becomes less as water warms and, more important, as it cools to freezing at 32° Fahrenheit (0° Celsius), and becomes ice. Ice is a poor heat conductor. Therefore, ice sheets on ponds, lakes and rivers trap heat in the water below. For this reason, only very shallow water bodies never freeze solid. Water is the only substance that occurs at ordinary temperatures in all three states of matter: solid, liquid, and gas. In its solid state, water is ice, and can be found as glaciers, snow, hail, and frost and ice crystals in clouds.
    [Show full text]
  • Final Risk Assessments for Diquat Dibromide
    Appendix A: Final Risk Assessment For Diquat Bromide The Water Quality Program NOVEMBER 2002 Publication Number 02-10-046 Appendix A: Final Risk Assessment For Diquat Bromide Prepared by: Kathleen Emmett Washington State Department of Ecology The Water Quality Program NOVEMBER 2002 Publication Number 02-10-046 For additional copies of this document contact: Department of Ecology Publications Distribution Center P.O. Box 47600 Olympia, WA 98504-7600 Telephone: (360) 407-7472 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status, or sexual orientation. If you have special accommodation needs or require this document in an alternative format, please call the secretary of the Watershed Management Section at 360-407-6404. The TTY number is 711 or 1-800-833-6388 TABLE OF CONTENTS Section: Label Description & History 1 Section 2: Chemical Characteristics 35 Section 3: Environmental Fate 47 Section 4: Environmental Effects 129 Section 5: Human Health Effects 355 Diquat Volume 4, Section 1 LABEL DESCRIPTION & HISTORY 29 PAGES SEIS Risk Assessments of Aquatic Herbicides: Study No. 00713 Diquat - LABEL DESCRIPTION & HISTORY Vol. 4, Sec. 1 – Page 1 SEIS Risk Assessments of Aquatic Herbicides: Study No. 00713 Vol. 4, Sec. 1 – Page 2 Diquat - LABEL DESCRIPTION & HISTORY TABLE OF CONTENTS TABLE OF CONTENTS ...............................................................................................................
    [Show full text]
  • Chapter 7 Arctic Oceanography; the Path of North Atlantic Deep Water
    Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions are found in the Arctic. We therefore postpone the discussion of the temperate and tropical oceans again and have a look at the oceanography of the Arctic Seas. It does not take much to realize that the impact of the Arctic region on the circulation and water masses of the World Ocean differs substantially from that of the Southern Ocean. The major reason is found in the topography. The Arctic Seas belong to a class of ocean basins known as mediterranean seas (Dietrich et al., 1980). A mediterranean sea is defined as a part of the world ocean which has only limited communication with the major ocean basins (these being the Pacific, Atlantic, and Indian Oceans) and where the circulation is dominated by thermohaline forcing. What this means is that, in contrast to the dynamics of the major ocean basins where most currents are driven by the wind and modified by thermohaline effects, currents in mediterranean seas are driven by temperature and salinity differences (the salinity effect usually dominates) and modified by wind action. The reason for the dominance of thermohaline forcing is the topography: Mediterranean Seas are separated from the major ocean basins by sills, which limit the exchange of deeper waters. Fig. 7.1. Schematic illustration of the circulation in mediterranean seas; (a) with negative precipitation - evaporation balance, (b) with positive precipitation - evaporation balance.
    [Show full text]
  • Aquatic Ecosystem Delineation and Description Guidelines AQUATIC ECOSYSTEMS TOOLKIT • MODULE 4 •Aquatic Ecosystem Delineation and Description Guidelines
    Aquatic ecosystems toolkit MODULE 4: Aquatic ecosystem delineation and description guidelines AQUATIC ECOSYSTEMS TOOLKIT • MODULE 4 •Aquatic ecosystem delineation and description guidelines Published by Department of Sustainability, Environment, Water, Population and Communities Authors/endorsement Aquatic Ecosystems Task Group Endorsed by the Standing Council on Environment and Water, 2012. © Commonwealth of Australia 2012 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968 (Cwlth), all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email <[email protected]>. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Sustainability, Environment, Water, Population and Communities. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the
    [Show full text]
  • A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods
    water Review A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods Elahe Akbari 1,2, Seyed Kazem Alavipanah 1,*, Mehrdad Jeihouni 1, Mohammad Hajeb 1,3, Dagmar Haase 4,5 and Sadroddin Alavipanah 4 1 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran 1417853933, Iran; [email protected] (E.A.); [email protected] (M.J.); [email protected] (M.H.) 2 Department of Climatology and Geomorphology, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran 3 Department of Remote Sensing and GIS, Shahid Beheshti University, Tehran 1983963113, Iran 4 Department of Geography, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany; [email protected] (D.H.); [email protected] (S.A.) 5 Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany * Correspondence: [email protected]; Tel.: +98-21-6111-3536 Received: 3 October 2017; Accepted: 16 November 2017; Published: 14 December 2017 Abstract: Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors.
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • Aquatic Ecosystem Part 1 a SHORT NOTE for B.SC ZOOLOGY
    2020 Aquatic ecosystem part 1 A SHORT NOTE FOR B.SC ZOOLOGY WRITTEN BY DR.MOTI LAL GUPTA ,H.O.D ,DEPARTMENT OF ZOOLOGY,B.N.COLLEGE,PATNA UNIVERSITY [Type the author name] DEPARTMENT OF ZOOLOGY,B.N COLLEGE, P.U 4/16/2020 Aquatic ecosystem part 1 2 1 Department of zoology,B.N College,P.U Page 2 Aquatic ecosystem part 1 3 Contents 1. Learning Objectives 2. Introduction 3. The Lentic Aquatic System Zonation in Lentic Systems Characteristics of Lentic Ecosystem Lentic Community Communities of the littoral zone Communities of Limnetic Zone Communities of Profundal Zone 4. Lake Ecosystem Thermal Properties of Lake Seasonal Cycle in Temperate Lakes Biological Oxygen Demand Eutrophy and Oligotrophy Langmuir Circulation and the Descent of the Thermocline Types of Lakes 5. State of Freshwater Ecosystems in Present Scenario Causes of Change in the properties of freshwater bodies Climate Change Change in Water Flow Land-Use Change Changing Chemical Inputs Aquatic Invasive Species Harvest Impact of Change on Freshwater Bodies Physical Transformations 6. Summary 2 Department of zoology,B.N College,P.U Page 3 Aquatic ecosystem part 1 4 1. Learning Objectives After the end of this module you will be able to 1. Understand the concept of fresh water ecosystem. 2. Understand the characteristics of the Lentic ecosystems. 3. Know the communities of lentic ecosystems and their ecological adaptations. 4. Know properties of Lake Ecosystems and their types. 5. Understand the major changes that are causing the threats to freshwaters ecosystems. 2. Introduction Freshwater ecology can be interpreted as interrelationship between freshwater organism and their natural environments.
    [Show full text]
  • Bottom Temperature and Salinity Distribution and Its Variability Around Iceland
    Deep-Sea Research I 111 (2016) 79–90 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Bottom temperature and salinity distribution and its variability around Iceland Kerstin Jochumsen a,n, Sarah M. Schnurr b, Detlef Quadfasel a a Institut für Meereskunde, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany b Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), c/o Biocentrum Grindel, Martin-Luther-King Platz 3, 20146 Hamburg, Germany article info abstract Article history: The barrier formed by the Greenland–Scotland-Ridge (GSR) shapes the oceanic conditions in the region Received 30 June 2015 around Iceland. Deep water cannot be exchanged across the ridge, and only limited water mass exchange Received in revised form in intermediate layers is possible through deep channels, where the flow is directed southwestward (the 12 February 2016 Nordic Overflows). As a result, the near-bottom water masses in the deep basins of the northern North Accepted 16 February 2016 Atlantic and the Nordic Seas hold major temperature differences. Available online 24 February 2016 Here, we use near-bottom measurements of about 88,000 CTD (conductivity–temperature–depth) Keywords: and bottle profiles, collected in the period 1900–2008, to investigate the distribution of near-bottom Average hydrographic conditions near Ice- properties. Data are gridded into regular boxes of about 11 km size and interpolated following isobaths. land We derive average spatial temperature and salinity distributions in the region around Iceland, showing Hydrographic variability the influence of the GSR on the near-bottom hydrography. The spatial distribution of standard deviation Seasonal cycle Species distribution modelling is used to identify local variability, which is enhanced near water mass fronts.
    [Show full text]
  • GLASSWORMS: a LIVE OR FROZEN TREAT for EVEN the MOST FINICKY FISH Konrad Schmidt
    B 31 American Currents Vol. 40, No. 1 GLASSWORMS: A LIVE OR FROZEN TREAT FOR EVEN THE MOST FINICKY FISH Konrad Schmidt My first encounter with Glassworms aka Phantom Midge I was on one attempt to collect these Glassworms using a Larvae (Chaoborous spp.) was in the 1970s working in a trawl. On the old paper graph depth finder just after sunset, tropical fish store (Schmidt 1984). These bizarre one-half- the black bottom turned a gray and appeared to rise. Just inch insects are plankton and completely transparent. Un- before the reaching the surface at what we assumed was the der a microscope, fore and aft air bladders are visible and lower end of the thermocline, the band narrowed and turned serve dual roles: maintaining equilibrium and neutral buoy- black again. We deployed the trawl, but constantly and hap- ancy to suspend larvae throughout the water column. In the hazardly zigzagged up and down through the narrow layer. tail region, there is a structure that looks very much like a Around midnight, we did get “pulled over” by sheriff depu- fin (with rays) and functions as a rudder. The head contains ties with the Washington County Water Patrol. We thought large, conspicuous eyes and massive mouth parts which are we had “some explaining” to do, but all they were interested used to catch and eat their common prey Daphnia. Glass- in was our life jackets. After a few hours of effort we had a worms move erratically through the water by contorting couple of gallons of Glassworms. Most of these were frozen, and flexing their bodies and can for short periods evade fish but I brought some home alive.
    [Show full text]