Purine Metabolism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nucleotide Degradation
Nucleotide Degradation Nucleotide Degradation The Digestion Pathway • Ingestion of food always includes nucleic acids. • As you know from BI 421, the low pH of the stomach does not affect the polymer. • In the duodenum, zymogens are converted to nucleases and the nucleotides are converted to nucleosides by non-specific phosphatases or nucleotidases. nucleases • Only the non-ionic nucleosides are taken & phospho- diesterases up in the villi of the small intestine. Duodenum Non-specific phosphatases • In the cell, the first step is the release of nucleosides) the ribose sugar, most effectively done by a non-specific nucleoside phosphorylase to give ribose 1-phosphate (Rib1P) and the free bases. • Most ingested nucleic acids are degraded to Rib1P, purines, and pyrimidines. 1 Nucleotide Degradation: Overview Fate of Nucleic Acids: Once broken down to the nitrogenous bases they are either: Nucleotides 1. Salvaged for recycling into new nucleic acids (most cells; from internal, Pi not ingested, nucleic Nucleosides acids). Purine Nucleoside Pi aD-Rib 1-P (or Rib) 2. Oxidized (primarily in the Phosphorylase & intestine and liver) by first aD-dRib 1-P (or dRib) converting to nucleosides, Bases then to –Uric Acid (purines) –Acetyl-CoA & Purine & Pyrimidine Oxidation succinyl-CoA Salvage Pathway (pyrimidines) The Salvage Pathways are in competition with the de novo biosynthetic pathways, and are both ANABOLISM Nucleotide Degradation Catabolism of Purines Nucleotides: Nucleosides: Bases: 1. Dephosphorylation (via 5’-nucleotidase) 2. Deamination and hydrolysis of ribose lead to production of xanthine. 3. Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase. Spiders and other arachnids lack xanthine oxidase. -
REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content. -
35 Disorders of Purine and Pyrimidine Metabolism
35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP). -
The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells. -
Functional Food Ingredients
B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION FUNCTIONAL FOOD INGREDIENTS www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION GREAT PRODUCT OPPORTUNITIES B&H Biotechnology Co., Ltd (Hong Kong) is an international trading company specializing in pharmaceutical products and functional food ingredients. We have more than 20 years of experience in international trading business and have customers in more than 30 countries. Quick response, best service and competitive prices have made us the preferred partner. FUNCTIONAL FOOD INGREDIENTS PRODUCT PORTFOLIO 5’- Nucleotide (NUC) products Fructose – 1,6-diphosphate (FDP) products Alpha-amylase inhibitor (wheat origin) Yeast RNA (Ribonucleic Acid) Casein Phosphopeptides, CPP Citicoline Sodium, CDPC S-Ademetionine, SAM Adenosine Monophophate, AMP Adenosine Cyclphosphate, cAMP Cytidine Monophosphate, CMP Feed Nucleotides Other food ingredients and supplements www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION 5’- NUCLEOTIDES AND FRUCTOSE-1,6-DIPHOSPHATE PRODUCTS B&H Biotechnology Co., Ltd provides high quality 5′-nucleotides, fructose-1,6- diphosphate salts and their derivatives from the most reliable manufactures. These products are widely used in pharmaceutical and food industries. Among them, 5'-nucleotides are particularly competitive owing to breakthroughs in the bio-catalysis, bio- process and separation technologies. All products have the certifications of HACCP, Halal and Kosher. These products have a strong market position in China, and are exported into EU, USA, South America , Australia and Middle-East. 5’-Nucleotide (NUC) products 5’-nucleotides are widely used in the pharmaceutical and food industries, especially as infant powder milk additives. They can improve the human immunity, enhance the ability of babies to resist bacillary dysentery and can reduce the incidence rate of diarrhea. -
Chapter 23 Nucleic Acids
7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids ************************************************************************************** -
Monophosphate- Binding Protein Complex with Subsequent Poly(A) RNA Synthesis in Embryonic Chick Cartilage
Specific nuclear binding of adenosine 3',5'-monophosphate- binding protein complex with subsequent poly(A) RNA synthesis in embryonic chick cartilage. W M Burch Jr, H E Lebovitz J Clin Invest. 1980;66(3):532-542. https://doi.org/10.1172/JCI109885. Research Article We used embryonic chick pelvic cartilage as a model to study the mechanism by which cyclic AMP increases RNA synthesis. Isolated nuclei were incubated with [32P]-8-azidoadenosine 3,5'-monophosphate ([32P]N3cAMP) with no resultant specific nuclear binding. However, in the presence of cytosol proteins, nuclear binding of [32P]N3cAMP was demonstrable that was specific, time dependent, and dependent on a heat-labile cytosol factor. The possible biological significance of the nuclear binding of the cyclic AMP-protein complex was identified by incubating isolating nuclei with either cyclic AMP or cytosol cyclic AMP-binding proteins prepared by batch elution DEAE cellulose chromatography (DEAE peak cytosol protein), or both, in the presence of cold nucleotides and [3H]uridine 5'-triphosphate. Poly(A) RNA production occurred only in nuclei incubated with cyclic AMP and the DEAE peak cytosol protein preparation. Actinomycin D inhibited the incorporation of [3H]uridine 5'-monophosphate into poly(A) RNA. The newly synthesized poly(A) RNA had a sedimentation constant of 23S. Characterization of the cytosol cyclic AMP binding proteins using [32P]N3-cAMP with photoaffinity labeling three major cAMP-binding complexes (41,000, 51,000, and 55,000 daltons). The 51,000 and 55,000 dalton cyclic AMP binding proteins were further purified by DNA-cellulose chromatography. In the presence of cyclic AMP they stimulated poly(A) RNA synthesis in isolated nuclei. -
The Biochemistry of Gout: a USMLE Step 1 Study Aid
The Biochemistry of Gout: A USMLE Step 1 Study Aid BMS 6204 May 26, 2005 Compiled by: Todd Kerensky Elizabeth Ballard Brendan Prendergast Eric Ritchie 1 Introduction Gout is a systemic disease caused by excess uric acid as the result of deficient purine metabolism. Clinically, gout is marked by peripheral arthritis and painful inflammation in joints resulting from deposition of uric acid in joint synovia as monosodium urate crystals. Although gout is the most common crystal-induced arthritis, a condition known as pseudogout can commonly be mistaken for gout in the clinic. Pseudogout results from deposition of calcium pyrophosphatase (CPP) crystals in synovial spaces, but causes nearly identical clinical presentation. Clinical findings Crystal-induced arthritis such as gout and pseudogout differ from other types of arthritis in their clinical presentations. The primary feature differentiating gout from other types of arthritis is the spontaneity and abruptness of onset of inflammation. Additionally, the inflammation from gout and pseudogout are commonly found in a single joint. Gout and pseudogout typically present with Podagra, a painful inflammation of the metatarsal- phalangeal joint of the great toe. However, gout can also present with spontaneous edema and painful inflammation of any other joint, but most commonly the ankle, wrist, or knee. As an exception, a spontaneous painful inflammation in the glenohumeral joint is usually the result of pseudogout. It is important to recognize the clinical differences between gout, pseudogout and other types of arthritis because the treatments differ markedly (Kaplan 2005). Pathophysiology and Treatment of Gout Although gout affects peripheral joints in clinical presentation, it is important to recognize that it is a systemic disorder caused by either overproduction or underexcretion of uric acid. -
Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation
Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. X Jin, … , B R Duling, J Linden J Clin Invest. 1997;100(11):2849-2857. https://doi.org/10.1172/JCI119833. Research Article We investigated the mechanism by which inosine, a metabolite of adenosine that accumulates to > 1 mM levels in ischemic tissues, triggers mast cell degranulation. Inosine was found to do the following: (a) compete for [125I]N6- aminobenzyladenosine binding to recombinant rat A3 adenosine receptors (A3AR) with an IC50 of 25+/-6 microM; (b) not bind to A1 or A2A ARs; (c) bind to newly identified A3ARs in guinea pig lung (IC50 = 15+/-4 microM); (d) lower cyclic AMP in HEK-293 cells expressing rat A3ARs (ED50 = 12+/-5 microM); (e) stimulate RBL-2H3 rat mast-like cell degranulation (ED50 = 2.3+/-0.9 microM); and (f) cause mast cell-dependent constriction of hamster cheek pouch arterioles that is attenuated by A3AR blockade. Inosine differs from adenosine in not activating A2AARs that dilate vascular smooth muscle and inhibit mast cell degranulation. The A3 selectivity of inosine may explain why it elicits a monophasic arteriolar constrictor response distinct from the multiphasic dilator/constrictor response to adenosine. Nucleoside accumulation and an increase in the ratio of inosine to adenosine may provide a physiologic stimulus for mast cell degranulation in ischemic or inflamed tissues. Find the latest version: https://jci.me/119833/pdf Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation Xiaowei Jin,* Rebecca K. Shepherd,‡ Brian R. Duling,‡ and Joel Linden‡§ *Department of Biochemistry, ‡Department of Molecular Physiology and Biological Physics, and §Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908 Abstract Mast cells are found in the lung where they release media- tors that constrict bronchiolar smooth muscle. -
Adenosine Challenge Information for Patients Your Doctor Has Recommended That You Have an Adenosine Challenge
Adenosine challenge Information for patients Your doctor has recommended that you have an adenosine challenge. The purpose of this test is to see if you have an accessory pathway called ‘Wolff-Parkinson-White (WPW) syndrome’. What is an accessory pathway? This is an extra electrical connection between the top chambers (atria) and bottom chambers (ventricles) of the heart. This extra electrical connection may allow electrical signals to bypass the normal route in your heart and form a short circuit. This can result in your heart beating abnormally fast for periods of time, which is called supra-ventricular tachycardia (SVT). This is not usually dangerous, but can cause unpleasant symptoms, such as a racing heart (palpitations), dizziness, chest pain, shortness of breath or, rarely, may cause you to collapse. Although the extra connection is present from birth (congenital), symptoms may not develop until later in life. In some cases, WPW syndrome may be life-threatening, particularly if it occurs alongside a type of irregular heartbeat called atrial fibrillation. However, this is rare and treatment can completely remove this risk. page 2 How is an accessory pathway diagnosed? Adenosine is the drug used in this test. It belongs to a group of medicines called anti-arrhythmics. Adenosine blocks electrical signals through the atrio-ventricular (AV) node. This means signals cannot travel from the top to the bottom chambers of the heart for a few seconds, until the drug effects wear off. If an accessory pathway (extra connection) is present, the electrical signals can still travel down to the ventricles, and this will show up on the ECG. -
Gout: a Low-Purine Diet Makes a Difference
Patient HANDOUT Gout: A Low-Purine Diet Makes a Difference Gout occurs when high levels of uric acid in your blood cause crystals to form and build up around a joint. Your body produces uric acid when it breaks down purines. Purines occur naturally in your body, but you also get them from certain foods and drinks. By following a low-purine diet, you can help your body control the production of uric acid and lower your chances of having another gout attack. Purines are found in many healthy foods and drinks. The purpose of a low-purine diet is to lower the amount of purine that you consume each day. Avoid Beer High-Purine Foods Organ meats (e.g., liver, kidneys), bacon, veal, venison Anchovies, sardines, herring, scallops, mackerel Gravy (purines leach out of the meat during cooking so gravy made from drippings has a higher concentration of purines) Limit Moderate- Chicken, beef, pork, duck, crab, lobster, oysters, shrimp : 4-6 oz daily Purine Foods Liquor: Limit alcohol intake. There is evidence that risk of gout attack is directly related to level of alcohol consumption What Other Dietary Changes Can Help? • Choose low-fat or fat-free dairy products. Studies show that low- or non-fat milk and yogurt help reduce the chances of having a gout attack. • Drink plenty of fluids (especially water) which can help remove uric acid from your body. Avoid drinks sweetened with fructose such as soft drinks. • Eat more non-meat proteins such as legumes, nuts, seeds and eggs. • Eat more whole grains and fruits and vegetables and less refined carbohydrates, such as white bread and cakes. -
Allopurinol Sodium) for Injection 500 Mg
ALOPRIM® (allopurinol sodium) for Injection 500 mg [al'-ō-prĭm] For Intravenous Infusion Only Rx only DESCRIPTION: ALOPRIM (allopurinol sodium) for Injection is the brand name for allopurinol, a xanthine oxidase inhibitor. ALOPRIM (allopurinol sodium) for Injection is a sterile solution for intravenous infusion only. It is available in vials as the sterile lyophilized sodium salt of allopurinol equivalent to 500 mg of allopurinol. ALOPRIM (allopurinol sodium) for Injection contains no preservatives. The chemical name for allopurinol sodium is 1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin 4-one monosodium salt. It is a white amorphous mass with a molecular weight of 158.09 and molecular formula C5H3N4NaO. The structural formula is: The pKa of allopurinol sodium is 9.31. CLINICAL PHARMACOLOGY: Allopurinol acts on purine catabolism without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. The degree of this decrease is dose dependent. Allopurinol is a structural analogue of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analogue, oxypurinol (alloxanthine), which also is an inhibitor of xanthine oxidase. Reutilization of both hypoxanthine and xanthine for nucleotide and nucleic acid synthesis is markedly enhanced when their oxidations are inhibited by allopurinol and oxypurinol. This reutilization does not disrupt normal nucleic acid anabolism, however, because feedback inhibition is an integral part of purine biosynthesis.