A Guide to the Zooplankton of Lake Champlain

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to the Zooplankton of Lake Champlain A Guide to the Zooplankton of Lake Champlain Item Type Article Authors Carling, Karen; Ater, Ian; Bouchard, Adam; Mihuc, Timothy Publisher Scientia Discipulorum: SUNY Plattsburgh Download date 29/09/2021 14:20:08 Link to Item http://hdl.handle.net/20.500.12648/1251 Plattsburgh State University of New York Volume 1 (2004) A Guide to the Zooplankton of Lake Champlain Karen J. Carling, Ian M. Ater, Megan R. Pellam, Adam M. Bouchard, Timothy B. Mihuc (Faculty) Lake Champlain Research Institute, Plattsburgh State University, Plattsburgh, NY ABSTRACT This key was developed by undergraduate research students working on a project with NYDEC and the Lake Champlain Monitoring program to develop long-term data sets for Lake Champlain plankton. Funding for development of this key was provided by, the Lake Champlain Basin Program through the U.S. Environmental Protection Agency (EPA) and the New York Department of Environmental Conservation (NYDEC). The key contains couplet keys for the major taxa in Cladocera and Copepoda and a picture key to the major Rotifer plankton in Lake Champlain. All drawings are original by Ian M. Ater. Many thanks to the employees of the Lake Champlain Research Institute and the NYDEC for hours of excellent work in the field and in the lab: Robert Bonham, Adam Bouchard, Trevor Carpenter, Virginia Damuth, Jeff Jones, Marti Kroll, Dustin Lewis, Shannon Margrey, Tracy McGregor, Stephanie Stone and David Welch. We greatly appreciate the time and effort of Paula Woodward and Francis Dumenci in helping to put this guide together. Keywords: Lake Champlain; zooplankton; identification; key INTRODUCTION Lake Champlain is one of the largest freshwater bodies in the United States. The Lake Champlain drainage basin is bordered by the Adirondack Mountains of New York to the west and the Green Mountains of Vermont to the east. This unique ecosystem has a surface area of 1130 km2, a length of 200 km and a mean depth of 19.4 m. The lake shoreline extends from Quebec in the north, 200 km south to Whitehall, New York, where it connects to the Hudson-Champlain canal. Islands and man-made transport causeways divide the lake into several distinct parts: Main Lake, South Lake, and Northeast Arm including Missisquoi Bay, and Malletts Bay. Malletts Bay and Missisquoi Bay are nearly isolated from the Northeast Arm, Malletts Bay by a narrow, shallow channel located between North and South Hero Islands, and Missisquoi Bay by an elongated shallow region (Meyer and Gruendling, 1979). The Northeast Arm is separated from the Main Lake by large islands that result in relative isolation (Shanley and Denner, 1999). South Lake is south of Crown Point it’s described as a river-like section that represents 40% of the lakes length, but less than 1% of its volume; while the Main Lake, which occupies the area from Rouses Point to Crown Point, represents 82% of the total volume (Meyer and Gruendling, 1979; Shanley and Denner, 1999). The Lake Champlain Monitoring Program has measured water quality variables and collected biological samples for plankton at 12-14 sites throughout Lake Champlain since the early 1990’s. Zooplankton sampling procedures were based on handbooks published by Vollenweider (1969) and Edmonson (1971). All sampling, (water quality and biological) was conducted by the New York Department of Environmental Conservation (NYDEC) and the New York State Museum staff. Zooplankton samples were taken as vertical net tows; from just above the sediment to the surface, using a 30cm diameter, 38 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) 153micron mesh net. Net retrieval rate was 1 meter per second. All samples were preserved using a formalin-rose Bengal solution (Carling et al., in press). Lab identification was made to the lowest possible taxon using standard taxonomic keys (Balcer et al., 1984, Grothe and Grothe, 1977, Pennak, 1989, Thorp and Covich, 1991, Smith and Fernando, 1978) with verification as needed by regional experts (Carling et al. in press). While keys to the zooplankton of the Great Lakes exist, no key has been developed specific to Lake Champlain zooplankton. All identifications were made using a compound microscope with 200-800x oculars. Rotifers were allowed to settle in Sedgwick-rafter cells prior to identification. The following is a dichotomous key developed by student researchers at the Lake Champlain Research Institute. It is representative of the zooplankton identified in the samples collected by NYDEC between 1992-2001, and historical records from (Shambaugh et al., 1999, Myer and Gruendling, 1979, and Muenscher, 1929). 39 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) Helmet ANTERIOR Head length Compound eye Rostrum First Antenna Second Antenna DORSAL Dorsal ramus Carapace Ventral ramus Body length VENTRAL Brood chamber Postabdominal claw Swimming Setae Shell spine Spine length POSTERIOR Figure 1 General morphology of Cladocera 40 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) ANTERIOR Ey e Second Antenna Metasome First Antenna Cep halic Segment DORSAL VENTRAL Urosome Genital Segment Thoracic Legs Caudal Rami Lateral setae Caudal setae (Terminal setae) POSTERIOR Figure 2 General morphology of Copepoda 41 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) Figure 3 Juvenile Daphnia Figure 4 Copepod Nauplius 42 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) CLASSIFICATION OF LAKE CHAMPLAIN ZOOPLANKTON PHYLUM ARTHROPODA Class Crustacea Subclass Branchiopoda Order Cladocera Suborder Halopoda Family Leptodoridae—Leptodora Suborder Eucladocera SUPERFAMILY SIDOIDEA Family Sididae—Sida, Diaphanosoma Family Holopedidae—Holopedium SUPERFAMILY CHYDOROIDEA Family Daphnidae—Ceriodaphnia, Daphnia Family Bosminidae—Bosmina, Eubosmina Family Chydoridae—Chydorus, Alona, Alonella, Pleuroxus Camptocercus, Acroperus, Eurycercus Subclass Copepoda Order Eucopepoda Suborder Calanoida Family Pseudocalanidae—Senecella Family Centropagidae—Limnocalanus Family Temoridae—Epischura Family Diaptomindae—Leptodiaptomus, Skistodiaptomus Suborder Cyclopoida Family Cyclopidae—Acanthocyclops, Cyclops, Diacyclops, Eucyclops, Macrocyclops, Mesocyclops, Tropocyclops Suborder Harpacticoida PHYLUM ROTIFERA Class Monogononta Order Flosculariacea Family Conochilidae—Conochilus Family Filiniidae—Filinia Order Ploimida Family Asplanchniadae—Asplanchna Family Brachionidae—Brachnoid, Keratella, Kelicottia, Nothalca, Branchionus Family Synchaetidae—Ploesoma, Polyarthra, Synchaeta Family Lecanidae—Monostyla, Lecane Family Trichocercidae—Trichocerca Family Gastropodiade—Ascomorpha, Gastropus Family Euchlanidae—Euchlanis Order Collothecacea Family Collothecidae—Collotheca Family Atrochidae—Cupelopagis 43 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) SPECIES DISTRIBUTION LIST South Lake Main Lake Northeast Arm North Lake Missisquoi Bay (site 4) (site 19) (site 34) (site 36) (site 50) Cyclopoid Copepods Cyclops scutifer X X X X Diacyclops thomasi X X X X X Eucyclops serrulatus X X X X Thermocyclops crassus X X X X X Mesocyclops/Macrocyclops X X X X X Tropocyclops X X X X X Acanthocyclops X X X X X Calanoid Copepods Epischura X X X X X Leptodiaptomus/Skistodiaptomus X X X X X Senecella calanoides X X X X X Limnocalanus X X X X X Harpacticoid Copepods Harpacticoid spp. X X X Cladocerans Bosmina longirostris X X X X X Bosmina spp. X X X X X Eubosmina X X X X X Ceriodaphnia X X X X X Daphnia longiremis X X X Daphnia mendotae X X X X X Daphnia retrocurva X X X X X Daphnia spp. X X X X X Alona bicolor X Chydorinae spp. X X X Diaphanosoma birgei X X X X X Diaphanosoma spp. X X X Holopedium gibberum X X X X X Leptodora kindti X X X X X Rotifera Asplanchna X X X X X Kelicottia X X X X X Keratella cochlearis X X X X X Keratella quadrata group X X X X X Nothalca squamala X X X X X Conochilus X X X X X Polyarthra X X X X X Brachinoid spp. X X X X X Branchionus calyciflorus X Ploesoma X X X X X Monostyla X X X X Synchaeta X X X X X Trichocerca X X X X X Filinia X X X X Ascomorpha/Gastropus X X X X X Lecane X Cupelopagis X Collotheca X Euchlanis X 44 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) DEC monitoring sites 45 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) Cladocera 1a. Thorax, abdomen, and thoracic appendages covered by a shell-like carapace….....…3 1b. Thorax, abdomen, and thoracic appendages not covered by carapace.……………....2 2. Body long and slender (up to 18mm long); eye is small, second antennae with approximately 50 swimming seta (Fig. 5)…………………………....Leptodora kindti 3a. Humpbacked animals, often a gelatinous sheath covers the back, swimming appendages unbranched in females (Fig. 6)………………..…..Holopedium gibberum 3b. Back not humped, no gelatinous sheath, swimming appendages branched in 2……..4 nd 4a. Swimming appendages with more than 10 setae in a row on one side of the 2 antennae…..………...…………………………...……………….…Family SIDIDAE, 5 4b. Swimming appendages with 10 or fewer setae on the 2nd antenna ……….... 6 5a. Rostrum (beak) present, >14 setae on the dorsal branch of the 2nd antennae (Fig. 7)… ……………………………………………………………….… Diaphanosoma birgei 5b. Rostrum (beak) not present, <14 setae on the dorsal ramus of the 2nd antennae, large compound eye present in the center of the head near the ventral margin (Fig. 8)..…… ……………………………………………………………………….. Sida crystallina body shapes can vary from ovate to ellipsoidal 46 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) Figure 5 (Leptodora kindti) Figure 6 (Holopedium gibberum) 47 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) Figure 7 (Diaphanosoma birgei) Figure 8 (Sida crystalline, lateral view) 48 A guide to the Zooplankton of Lake Champlain Plattsburgh State University of New York Volume 1 (2004) 6a.
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • The State of Lake Superior in 2000
    THE STATE OF LAKE SUPERIOR IN 2000 SPECIAL PUBLICATION 07-02 The Great Lakes Fishery Commission was established by the Convention on Great Lakes Fisheries between Canada and the United States, which was ratified on October 11, 1955. It was organized in April 1956 and assumed its duties as set forth in the Convention on July 1, 1956. The Commission has two major responsibilities: first, develop coordinated programs of research in the Great Lakes, and, on the basis of the findings, recommend measures which will permit the maximum sustained productivity of stocks of fish of common concern; second, formulate and implement a program to eradicate or minimize sea lamprey populations in the Great Lakes. The Commission is also required to publish or authorize the publication of scientific or other information obtained in the performance of its duties. In fulfillment of this requirement the Commission publishes the Technical Report Series, intended for peer-reviewed scientific literature; Special Publications, designed primarily for dissemination of reports produced by working committees of the Commission; and other (non-serial) publications. Technical Reports are most suitable for either interdisciplinary review and synthesis papers of general interest to Great Lakes fisheries researchers, managers, and administrators, or more narrowly focused material with special relevance to a single but important aspect of the Commission's program. Special Publications, being working documents, may evolve with the findings of and charges to a particular committee. Both publications follow the style of the Canadian Journal of Fisheries and Aquatic Sciences. Sponsorship of Technical Reports or Special Publications does not necessarily imply that the findings or conclusions contained therein are endorsed by the Commission.
    [Show full text]
  • SMITH B.Sc., University of British Columbia, 2005
    Drivers of Wetland Zooplankton Community Structure in a Rangeland Landscape of the Southern Interior of British Columbia by LINDSEY MARGARET SMITH B.Sc., University of British Columbia, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCES in the Department of Natural Resource Sciences Thesis examining committee: Brian Heise (Ph.D.) (Thesis Supervisor), Associate Professor, Natural Resource Sciences, Thompson Rivers University Darryl Carlyle-Moses (Ph.D.), Associate Professor, Geography & Environmental Studies, Thompson Rivers University Lauchlan Fraser (Ph.D.), Professor, Natural Resource Sciences, Thompson Rivers University Louis Gosselin (Ph.D.), Associate Professor, Biological Sciences, Thompson Rivers University Ian Walker (Ph.D.) (External Examiner), Professor, Biology, University of British Columbia-Okanagan May 2012 Thompson Rivers University Lindsey Margaret Smith, 2012 ii Thesis Supervisor: Brian Heise (Ph.D.) ABSTRACT Zooplankton play a vital role in aquatic ecosystems and communities, demonstrating community responses to environmental disturbances. Surrounding land use practices can impact zooplankton communities indirectly through hydrochemistry and physical environmental changes. This study examined the effects of cattle disturbance on zooplankton community structure in wetlands of the Southern Interior of British Columbia. Zooplankton samples were obtained from fifteen morphologically similar freshwater wetlands in the summer of 2009. Physical, chemical and biological characteristics of the wetlands were also assessed. Through the use of Cluster Analysis and Non-metric Multidimensional Scaling (NMDS), differences in community assemblages were found amongst wetlands. Correlations of environmental variables with NMDS axes and multiple regression analyses indicated that both cattle impact (measured by percent of shoreline impacted by cattle) and salinity heavily influenced community structure (species richness and composition).
    [Show full text]
  • A Revised Key to the Zooplankton of Lake Champlain
    Plattsburgh State University of New York Volume 6 (2013) A Revised Key to the Zooplankton of Lake Champlain Mark LaMay, Erin Hayes-Pontius, Ian M. Ater, Timothy B. Mihuc (faculty) Lake Champlain Research Institute, SUNY Plattsburgh, Plattsburgh, NY 12901 ABSTRACT This key was developed by undergraduate research students working on a project with NYDEC and the Lake Champlain Monitoring program to develop long-term data sets for Lake Champlain plankton. Funding for development of this key was provided by, the Lake Champlain Basin Program and the New York Department of Environmental Conservation (NYDEC). The key contains couplet keys for the major taxa in Cladocera and Copepoda and Rotifer plankton in Lake Champlain. Illustrations are by Erin Hayes-Pontius and Ian Ater. Many thanks to the employees of the Lake Champlain Research Institute for hours of excellent work in the field and in the lab: especially Casey Bingelli, Heather Bradley, Amanda Groves and Carrianne Pershyn. Keywords: Lake Champlain; zooplankton; identification; key INTRODUCTION Lake Champlain is one of the largest freshwater bodies in the United States. The Lake Champlain drainage basin is bordered by the Adirondack Mountains of New York to the west and the Green Mountains of Vermont to the east. This unique ecosystem has a surface area of 1130 km2, a length of 200 km and a mean depth of 19.4 m. The lake shoreline extends from Quebec in the north, 200 km south to Whitehall, New York, where it connects to the Hudson-Champlain canal. Islands and man-made transport causeways divide the lake into several distinct parts: Main Lake, South Lake, and Northeast Arm including Missisquoi Bay, and Malletts Bay.
    [Show full text]
  • Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water As Vectors for Non-Indigenous Species Introductions to the Great Lakes
    A Final Report for the Project Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-indigenous Species Introductions to the Great Lakes Principal Investigators: Thomas Johengen, CILER-University of Michigan David Reid, NOAA-GLERL Gary Fahnenstiel, NOAA-GLERL Hugh MacIsaac, University of Windsor Fred Dobbs, Old Dominion University Martina Doblin, Old Dominion University Greg Ruiz, Smithsonian Institution-SERC Philip Jenkins, Philip T Jenkins and Associates Ltd. Period of Activity: July 1, 2001 – December 31, 2003 Co-managed by Cooperative Institute for Limnology and Ecosystems Research School of Natural Resources and Environment University of Michigan Ann Arbor, MI 48109 and NOAA-Great Lakes Environmental Research Laboratory 2205 Commonwealth Blvd. Ann Arbor, MI 48105 April 2005 (Revision 1, May 20, 2005) Acknowledgements This was a large, complex research program that was accomplished only through the combined efforts of many persons and institutions. The Principal Investigators would like to acknowledge and thank the following for their many activities and contributions to the success of the research documented herein: At the University of Michigan, Cooperative Institute for Limnology and Ecosystem Research, Steven Constant provided substantial technical and field support for all aspects of the NOBOB shipboard sampling and maintained the photo archive; Ying Hong provided technical laboratory and field support for phytoplankton experiments and identification and enumeration of dinoflagellates in the NOBOB residual samples; and Laura Florence provided editorial support and assistance in compiling the Final Report. At the Great Lakes Institute for Environmental Research, University of Windsor, Sarah Bailey and Colin van Overdijk were involved in all aspects of the NOBOB shipboard sampling and conducted laboratory analyses of invertebrates and invertebrate resting stages.
    [Show full text]
  • Seasonal Zooplankton Dynamics in Lake Michigan
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2012 Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition Henry A. Vanderploeg National Oceanic and Atmospheric Administration, [email protected] Steven A. Pothoven Great Lakes Environmental Research Laboratory, [email protected] Gary L. Fahnenstiel Great Lakes Environmental Research Laboratory, [email protected] Joann F. Cavaletto National Oceanic and Atmospheric Administration, [email protected] James R. Liebig National Oceanic and Atmospheric Administration, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Vanderploeg, Henry A.; Pothoven, Steven A.; Fahnenstiel, Gary L.; Cavaletto, Joann F.; Liebig, James R.; Stow, Craig A.; Nalepa, Thomas F.; Madenjian, Charles P.; and Bunnell, David B., "Seasonal zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition" (2012). Publications, Agencies and Staff of the U.S. Department of Commerce. 406. https://digitalcommons.unl.edu/usdeptcommercepub/406 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Henry A. Vanderploeg, Steven A. Pothoven, Gary L. Fahnenstiel, Joann F.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Zooplankton Species Diversity in the Temporary Wetland System of The
    ZOOPLANKTON SPECIES DIVERSITY IN THE TEMPORARY WETLAND SYSTEM OF THE SAVANNAH RIVER SITE, SOUTH CAROLINA, USA by MARCUS ALEXANDER ZOKAN (Under the Direction of JOHN M. DRAKE) ABSTRACT Understanding how diverse species communities develop and how the species within them coexist is one of the central questions in community ecology. The temporary wetland system occurring on the Savannah River Site near Aiken, South Carolina is home to the most species rich temporary wetland zooplankton assemblage known in the world. While previous research has documented this remarkable diversity, there has been little study directed at understanding how diversity is distributed at the landscape and local scales or on investigating potential mechanisms of what has led to the high richness of this system. The collection of studies presented here examine diversity patterns in the zooplankton community, links these patterns to spatial and temporal variation, experimentally tests the effects of two important environmental factors on diversity, and describes two new species. Results indicate that long hydroperiod lengths were associated with high species richness. Wetlands with similar species assemblages were generally closer together, suggesting the importance of dispersal. Over the course of a year, diversity increased during the spring and summer months and declined toward the fall, these changes were associated with low pH, low conductivity, and high water temperature. Vegetated areas within wetlands had greater diversity than did unvegetated areas, and diversity was particularly low in areas of decaying vegetation. Temporal comparisons provide evidence for distinct seasonal communities that arise every year. Experimental tests of the impact of hydroperiod length on diversity found that shorter hydroperiods resulted in reduced species richness, and communities dominated by just a few species.
    [Show full text]
  • Species Turnover and Richness of Aquatic Communities in North Temperate Lakes
    SPECIES TURNOVER AND RICHNESS OF AQUATIC COMMUNITIES IN NORTH TEMPERATE LAKES by SHELLEY ELIZABETH ARNOTT A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Zoology) at the UNIVERSITY OF WISCONSIN-MADISON 1998 TABLE OF CONTENTS Abstract ii Acknowledgments iv Preface 1 Chapter 1: 9 Crustacean zooplankton species richness: single- and multiple-year estimates. Chapter 2: 45 Inter-annual variability and species turnover of crustacean zooplankton in Shield lakes. Chapter 3: 86 Long-term species turnover and richness estimates: a comparison among aquatic organisms. Chapter 4: 146 Lakes as islands: biodiversity, invasion, and extinction. Summary of Thesis 173 II ABSTRACT SPECIES TURNOVER AND RICHNESS OF AQUATIC COMMUNITIES IN NORTH TEMPERATE LAKES SHELLEY ELIZABETH ARNOTT Under the supervision of Professor John J. Magnuson At the University of Wisconsin- Madison I estimated annual species turnover rates for three groups of aquatic organisms in relatively undisturbed north temperate lakes. Apparent turnover rates (i.e. measured turnover rates) were high, averaging 18% for phytoplankton, 16% for zooplankton, and 20% for fishes. Based on life history characteristics and dispersal abilities, I expected phytoplankton to have higher turnover rates than zooplankton, which would have higher turnover rates than fishes. Results were contrary to my expectations; apparent turnover was high and similar for each of the taxonomic groups. Comparison of apparent turnover rates, however, was problematic because sampling error could account for much of the apparent turnover. Because the turnover that could be attributed to sampling error was so high, it should be taken into consideration when assessing species turnover. I have developed a new and unique method for quantifying potential sampling error in which I calculate the species turnover that could be attributed to failing to detect species that were present but at low abundance.
    [Show full text]
  • Under-Ice Availability of Phytoplankton Lipids Is Key to Freshwater
    www.nature.com/scientificreports OPEN Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter Received: 22 February 2017 Accepted: 16 August 2017 survival Published: xx xx xxxx Guillaume Grosbois 1, Heather Mariash1,2, Tobias Schneider1 & Milla Rautio1 Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under- ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L−1) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight−1), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (<2.5 µg mg dry weight−1). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption. Winter is the most unexplored season in ecology and has often been portrayed as a dormant period for aquatic organisms especially if the ecosystem is ice-covered1.
    [Show full text]
  • Crustacea: Cladocera: Ctenopoda) from Greenland
    J. Limnol., 64(2): 103-112, 2005 New species of Holopedium Zaddach, 1855 (Crustacea: Cladocera: Ctenopoda) from Greenland Nikolai M. KOROVCHINSKY A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia e-mail: [email protected] ABSTRACT The genus Holopedium remains poorly studied. Its nominal species H. gibberum was superficially described; later morphological differences of representatives of this taxon, especially in North America, have been recorded but not investigated in detail. The Greenlandic members of the taxon, listed for the first time in 1889, have never been precisely studied. Meanwhile, their comparative analysis resulted in the description of a new species, H. groenlandicum, which differs from H. gibberum s. l. in having a dorsally low shell and jelly envelope, shorter row of valve marginal spinules which are subdivided in groups, and comparatively longer postabdominal claws. Morphologically, the new species seems more primitive than H. gibberum. Absence of males and the presence of resting eggs may indicate a pseudosexual or another, poorly understood, mode of reproduction. Holopedium groenlandicum inhabits only permanent water bodies, mostly along the south-western and western coast of Greenland up to 71º N. This species is endemic to the island, and is most probably of relict nature. Key words: Cladocera, Holopedium, new species, Greenland In Greenland, representatives of the genus 1. INTRODUCTION (Holopedium gibberum) were recorded originally by The genus Holopedium, represented by a single Guerne & Richard (1889) in their first large list of species, H. gibberum Zaddach, 1855, was described for Cladocera of the island. Later on, this taxon was listed the first time in the middle of the 19th century from the in almost every publication on Greenlandic freshwater vicinity of Königsberg (now Kaliningrad City, Russia) fauna (Stephensen 1913; Haberbosch 1916, 1920; (Zaddach 1855).
    [Show full text]
  • Calibration of the Multi-Gene Metabarcoding Approach As an Efficient and Accurate Biomonitoring Tool
    Calibration of the multi-gene metabarcoding approach as an efficient and accurate biomonitoring tool Guang Kun Zhang Department of Biology McGill University, Montréal April 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Guang Kun Zhang 2017 1 TABLE OF CONTENTS Abstract .................................................................................................................. 3 Résumé .................................................................................................................... 4 Acknowledgements ................................................................................................ 5 Contributions of Authors ...................................................................................... 6 General Introduction ............................................................................................. 7 References ..................................................................................................... 9 Manuscript: Towards accurate species detection: calibrating metabarcoding methods based on multiplexing multiple markers.................................................. 13 References ....................................................................................................32 Tables ...........................................................................................................41 Figures ........................................................................................................
    [Show full text]