Surface Runoff Features on Mars: Testing the Carbon Dioxide Formation Hypothesis Sarah T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE CURIOUS SHORELINES of GORGONUM CHAOS. A. D. Howard1 and J
Sixth International Conference on Mars (2003) 3190.pdf THE CURIOUS SHORELINES OF GORGONUM CHAOS. A. D. Howard1 and J. M. Moore2, 1Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904 ([email protected]), 2NASA Ames Re- search Center, MS 245-3, Moffett Field, CA 94035 ([email protected]). Introduction: Level, bench-like platforms in the The center of the concave basin is partially occu- interior of the Gorgonum Chaos basin appear to be pied by the knobby “chaos”. These are generally flat- shorelines associated with an ancient lake. These topped mesas that appear at one time to have been a shorelines, however, seem to lack the typical features continuous deposit that has been dissected into isolated of shorelines associated with wave and current trans- mesas along linear trends. We have interpreted such port and erosion, such as crescentic embayments, spits, deposits in this and other basins in the region to be barrier islands, and wave-cut cliffs. Rather, the lake- lake-related deposits, possibly evaporates that have facing platform edges are commonly rounded and cu- been partially dissolved [5]. These deposits were em- mulate in planform, often evenly encircling presumed placed and eroded prior to the features discussed here. islands. We interpret these shorelines to have been Shoreline Features: The center of Gorgonum ba- formed by outward growth in a quiescent environment, sin is relatively free of chaos knobs (Fig. 1) and is a possibly in ice-covered bodies of water and possibly, in relatively level plain at an elevation of about -350 to - part, as chemical precipitates. -
Temperature- and Pressure-Dependent Structural Transformation of Methane Hydrates in Salt Environments
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Temperature- and pressure-dependent structural 10.1002/2016GL072277 transformation of methane hydrates Key Points: in salt environments • Under a low-pressure condition, the methane hydrate is decomposed Donghoon Shin1 , Minjun Cha2 , Youjeong Yang3, Seunghyun Choi1, Yesol Woo1 , through a rapid sublimation of water 4 5 6 6 7,8,9 1,3 from the surface of hydrate crystals Jong-Won Lee , Docheon Ahn , Junhyuck Im , Yongjae Lee , Oc Hee Han , and Ji-Ho Yoon • The hydrated salt of NaCl · 2H2O 1 undergoes a phase transition into a Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea, crystal growth of crystalline NaCl via 2Department of Energy and Resources Engineering, Kangwon National University, Chuncheon, South Korea, 3Department the migration of salt ions of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and • The methane hydrate is fully Ocean University, Busan, South Korea, 4Department of Environmental Engineering, Kongju National University, Chungnam, decomposed in brine solutions at 5 6 temperatures above 252 K, the South Korea, Beamline Department, Pohang Accelerator Laboratory, Pohang, South Korea, Department of Earth System 7 eutectic point of NaCl · 2H2O Sciences, Yonsei University, Seoul, South Korea, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea, 8Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea, 9Department of Chemistry and Nano-Science, College of Natural Sciences, Ewha Womans University, Seoul, South Korea Supporting Information: • Supporting Information S1 Abstract Understanding the stability of volatile species and their compounds under various surface and Correspondence to: J.-H. -
1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 1 C
1 1 2.6 Physical Chemistry and Thermal Evolution of Ices at Ganymede 2 C. Ahrens, NASA Goddard Space Flight Center, Greenbelt, MD; [email protected] 3 A. Solomonidou, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; & LEISA 4 – Observatoire de Paris, CNRS, UPMC Univ., Paris 06, Univ. Paris-Diderot, Meudon, France; 5 [email protected] 6 K. Stephan, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany; 7 [email protected] 8 K. Kalousova, Charles University, Faculty of Mathematics and Physics, Department of Geophysics, 9 Prague, Czech Republic; [email protected] 10 N. Ligier, Institut d’Astrophysique Spatiale, Université Paris-Saclay, Orsay, France; 11 [email protected] 12 T. McCord, Bear Fight Institute, Winthrop, WA; [email protected] 13 C. Hibbitts, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD; 14 [email protected] 15 16 Abstract 17 18 Ganymede’s surface is composed mostly of water ice and other icy materials in addition to minor non-ice 19 components. The formation and evolution of Ganymede’s landforms highly depend on the nature of the 20 icy materials as they present various thermal and rheological behaviors. This chapter reviews the 21 currently known thermodynamic parameters of the ice phases and hydrates reported on Ganymede, which 22 seem to affect the evolution of the surface, using mainly results from the Voyager and Galileo missions. 23 24 Keywords: Ganymede; Ices; Ices, Mechanical Properties; Experimental techniques; Geological 25 processes 26 27 1 Introduction 28 29 Icy bodies of the outer solar system, including satellites of the gas giants, harbor surface ices made of 30 volatile molecules, clathrates, and complex molecules like hydrocarbons. -
Ethane Clathrate Hydrate Infrared Signatures for Solar System Remote Sensing E Dartois, F Langlet
Ethane clathrate hydrate infrared signatures for solar system remote sensing E Dartois, F Langlet To cite this version: E Dartois, F Langlet. Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, Elsevier, 2021. hal-03159998 HAL Id: hal-03159998 https://hal.archives-ouvertes.fr/hal-03159998 Submitted on 4 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ethane clathrate hydrate infrared signatures for solar system remote sensing. E. Dartois1, F. Langlet2, 1 Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, Bât 520, Rue André Rivière, 91405 Orsay, France e-mail: [email protected] 2 Institut d’Astrophysique Spatiale (IAS), UMR8617, CNRS, Université Paris-Saclay, Bât. 121, 91405 Orsay, France keywords: Planetary ices, IR spectroscopy, Clathrate hydrate, Ethane, Remote sensing To appear in Icarus Abstract their retention time scales in solar system bodies, and also mod- ify their release conditions. b=The hydrate term is sometimes Hydrocarbons such as methane and ethane are present in many used as a semantic shortcut to designate clathrate hydrates but solar system objects, including comets, moons and planets. The must not be confused neither with hydrates nor with ice mixtures interaction of these hydrocarbons with water ice at low temper- where a molecule is interacting with water ice and not necessar- atures could lead to the formation of inclusion compounds, such ily mediated via an ordered crystalline cage. -
Geologic History of Water on Mars
GEOLOGIC HISTORY OF WATER ON MARS: REGIONAL EVOLUTION OF AQUEOUS AND GLACIAL PROCESSES IN THE SOUTHERN HIGHLANDS, THROUGH TIME Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat) vorgelegt als kumulative Arbeit am Fachbereich Geowissenschaften der Freien Universität Berlin von SOLMAZ ADELI Berlin, 2016 Erstgutachter: Prof. Dr. Ralf Jaumann Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Planetologie sowie Deutsches Zentrum für Luft- und Raumfahrt Institut für Planetenforschung, Abteilung Planetengeologie Zweitgutachter: Prof. Dr. Michael Schneider Freie Universität Berlin Institut für Geologische Wissenschaften Arbeitsbereich Hydrogeologie Tag der Disputation: 22 July 2016 i To my mother and my grandmother, the two strong women who inspired me the most, to follow my dreams, and to never give up. تقديم به مادر و مادر بزرگم به دو زن قوى كه الهام دهنده ى من بودند تا آرزو هايم را دنبال كنم و هرگز تسليم نشوم ii iii EIDESSTATTLICHE ERKLAERUNG Hiermit versichere ich, die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angeführten Quellen und Hilfsmittel benutzt zu haben. Solmaz Adeli Berlin, 2016 iv v Acknowledgement First of all, I would like to thank my supervisor Prof. Dr. Ralf Jaumann for giving me the opportunity of working at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). I wish to thank him particularly for standing behind me in all the ups and downs. Herr Jaumann, I am so deeply grateful for your support and your trust. Danke schön! This work would have not been achieved without the support of Ernst Hauber, my second supervisor. I have also been most fortunate to be able to work with him, and I have greatly appreciated the countless hours of discussions, all his advice regarding scientific issues, his feedbacks on my manuscripts, and everything. -
Structural and Kinetic Studies of Structure I Gas Hydrates Via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction Susan Michelle Everett [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Materials Science and Engineering Commons Recommended Citation Everett, Susan Michelle, "Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1718 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Susan Michelle Everett entitled "Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Materials Science and Engineering. Claudia -
Thermodynamic Studies on CO2 Capture Through Gas Hydrate Formation Technology
Thermodynamic Studies on CO2 Capture through Gas Hydrate Formation Technology Poorandokht Ilani-Kashkouli MSc. Analytical Chemistry (Shiraz University, Shiraz, Iran, (Sept2009-Jan2012)) This dissertation (ENNO8RPH1) is submitted for the degree of doctorate of philosophy in Engineering (Ph.D. Eng) in the School of Chemical Engineering at the University of KwaZulu- Natal. Supervisor: Prof. Deresh Ramjugernath Co-supervisor(s): Prof. Amir H. Mohammadi, Dr. Paramespri Naidoo April 2015 Declaration I, Poorandokht Ilani-Kashkouli, declare that: i. The research reported in this dissertation, except where otherwise indicated is my original work. ii. This dissertation has not been submitted for any degree or examination at any university. iii. This dissertation does not contain other person’s data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. iv. This dissertation does not contain other person’s writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted then: a) Their words have been re-written but the general information attributed to them has been referenced; b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced. v. Where I have reproduced a publication of which I am an author or co-author I have indicated in detail which part of the publication was actually written by myself alone and have fully referenced such publications. vi. This dissertation does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source are detailed in the dissertation and in the References sections. -
Carbon Dioxide Clathrate Hydrate Formation at Low Temperature. Diffusion-Limited Kinetics Growth As Monitored by FTIR E
Carbon dioxide clathrate hydrate formation at low temperature. Diffusion-limited kinetics growth as monitored by FTIR E. Dartois1, F. Langlet2, 1 Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, Bât 520, Rue André Rivière, 91405 Orsay, France e-mail: [email protected] 2 Institut d’Astrophysique Spatiale (IAS), UMR8617, CNRS, Université Paris-Saclay, Bât. 121, 91405 Orsay, France keywords: Infrared: planetary systems; Planets and satellites: composition; Comets: general; Methods: laboratory: solid state; Solid state: volatile; Molecular processes To appear in Astronomy & Astrophysics Abstract tion in climate change if natural fields are destabilised (Riboulot et al. 2018). Carbon dioxide clathrate hydrate is of interest for The formation and presence of clathrate hydrates could influ- fundamental research on Earth, or for its potential use in green- ence the composition and stability of planetary ices and comets; house gas sequestration (Duc et al. 2007; House et al. 2006). they are at the heart of the development of numerous complex planetary models, all of which include the necessary condition In a planetary or astrophysical context, clathrate hydrates imposed by their stability curves, some of which include the are considered because they can retain volatile molecules at cage occupancy or host-guest content and the hydration number, pressures higher than the pure compound that would otherwise but fewer take into account the kinetics aspects. We measure sublimate under most astrophysical conditions, and/or influence the temperature-dependent-diffusion-controlled formation of the the geophysics of large bodies (e.g. Fortes & Choukroun 2010; carbon dioxide clathrate hydrate in the 155-210 K range in or- Choukroun et al. -
Water-Related Processes and Associated Landforms in Eastern Atlantis and Northern Gorgonum Basins, Mars R
Geophysical Research Abstracts, Vol. 8, 01160, 2006 SRef-ID: 1607-7962/gra/EGU06-A-01160 © European Geosciences Union 2006 Water-related processes and associated landforms in Eastern Atlantis and Northern Gorgonum Basins, Mars R. D. Capitan (1,2) 1. Department of Geography, University of Western Ontario, London, Canada N6A 5C2, [email protected] , fax. 1-519-661 3750 2. Department of Geography and Geology, “Al. I. Cuza” University, Iasi, Romania, Blvd. Carol I, nr. 11 Martian water-related landforms developed in Atlantis and Gorgonum areas are re- lated to volcanic processes in the Tharsis area via long radial fracture zones. This is the only mechanism which could bring into the Martian system sufficient amounts of water and energy to create water-related processes at the surface. The uplift of the Tharsis area formed deep crustal fractures in the Martian megaregolith such as those located inside Gorgonum and Atlantis Chaos (e.g. Sirenum Fossae) [1]. We describe here the mechanism which made possible the formation of three distinct water-related landforms, by different processes, and relate them to the regional context of north- ern Gorgonum basin. Tectonic movements played an important role in defining the base-level for different fluvial basins, and the general dynamics of aqueous reservoirs inside the regolith. At the first site, water accumulated beneath the Magelhaens crater rim has been released catastrophically inside the crater, forming a fan-delta in a pre- existing crater lake. Later, due to tectonic movements, the outer rim collapsed toward the Atlantis Chaos, enabling the formation of fault-related stream channels. In north- ern Gorgonum Chaos the formation of outflow channels in the southern MEM-Vy crater first formed alluvial fans and a delta inside an unnamed pair of craters located at 169.94˚W, 34.35˚S, and then filled and partially eroded them, as a second outflow channel broke the neighbour’s crater rim. -
Planetary & Solar System Sciences
EGU General Assembly 2012 EGU General Assembly 2012 Programme Group Programme PS – Planetary & Solar System Sciences Monday, 23 April ........................................................................................................................................................................ 2 PS1.1 ........................................................................................................................................................................................ 2 PS2.2 ........................................................................................................................................................................................ 2 GD1.1/PS2.7 .............................................................................................................................................................................. 3 PS3.3 ........................................................................................................................................................................................ 4 PS5.3/ST6.4 ............................................................................................................................................................................... 4 ST2.4/PS5.4 ............................................................................................................................................................................... 6 Tuesday, 24 April ...................................................................................................................................................................... -
Water and Martian Habitability Results of an Integrative Study Of
Planetary and Space Science 98 (2014) 128–145 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life” R. Jaumann a,b,n, D. Tirsch a, E. Hauber a, G. Erkeling c, H. Hiesinger c, L. Le Deit a,d, M. Sowe b, S. Adeli a, A. Petau a, D. Reiss c a DLR, Institute of Planetary Research, Berlin, Germany b Freie Universität Berlin, Institute of Geosciences, Berlin, Germany c Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany d Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France article info abstract Article history: A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary) Received 11 March 2013 existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both Received in revised form geomorphological and mineralogical evidence point to the episodic availability of liquid water at the 10 February 2014 surface of Mars, and physical modeling and small-scale observations suggest that this is also true for Accepted 21 February 2014 more recent periods. Habitable conditions, however, were not uniform over space and time. Several key Available online 5 March 2014 properties, such as the availability of standing bodies of water, surface runoff and the transportation of Keywords: nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to Mars be considered in any habitability assessment. -
Clathrate Desalination Plant, Preliminary Research Study
CLATHRATE DESALINATION PLANT PRELIMINARY RESEARCH STUDY BY Richard A. McCormack Richard K. Andersen 8 Thermal Energy Storage, Inc. 6335 Ferris Square, Suite E San Diego, California 92121 Contract No. 1425-3-CR-81-19520 Water Treatment Technology Program Report No. 5 June 1995 U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group Form Approved REPORT DOCUMENTATION PAGE Oh48 No. 0704-0188 0~15 Highway. SUW ‘X4. crlln9ton. V4 22202-4302. and 10 the OfWe 01 Management and Budget. Paperwork Reducteon PrOJecr (07040188). Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 5. FUNDING NUMBERS CLATHRATE DESALINATION PLANT PRELIMINARY RESEARCH STUDY Contract No. 1425-3-CR-81-19520 6. AUTH%(S) Richard A. McCormack Richacd K. Andersen I : ! 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS Thermtil Energy Storage, Inc. 6335 Ferris Square, Suite E San Diego, CA 92121 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSORlNG/MONlTORlNG AGENCY REPORT NUMBER Bureau of Reclamation Denver Federal Center Water Treatment PO Box 25007 Technology Program Denver, CO 80225-0007 Report No. 5 11. SUPPLEMENTARY NOTES t 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Available from the National Technical Information Service, I Operations Division, 5285 Port Royal Road, Springfield, 1 Virginia 22161 ! 1 t / t j 13. ABSTRACT (Maxrmvm 200 words) jThis report presents preliminary research, design, and cost estimates for a clathrate 1 ifreeze desalination method and system. A clathrate former is injected through the linner pipe of a submerged pipeline to a predetermined ocean depth at which the ocean itemperature is less than the clathrate forming temperature.