New Insights for Gem-Quality Mn-Bearing Diopside-Omphacite

Total Page:16

File Type:pdf, Size:1020Kb

New Insights for Gem-Quality Mn-Bearing Diopside-Omphacite minerals Article New Insights for Gem-Quality Mn-Bearing Diopside-Omphacite, Violane Variety, from Saint Marcel (Val D’Aosta, Italy): Its Trace Elements and Spectroscopic Characterization Valeria Diella 1,* , Rosangela Bocchio 2, Franca Caucia 3, Nicoletta Marinoni 2, Antonio Langone 4 and Elena Possenti 5 1 National Research Council, Institute of Environmental Geology and Geoengineering (IGAG), Section of Milan, 20133 Milan, Italy 2 Department of Earth Sciences “Ardito Desio”, University of Milan, 20133 Milan, Italy; [email protected] (R.B.); [email protected] (N.M.) 3 Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; [email protected] 4 National Research Council, Institute of Geosciences and Earth Resources (IGG), Section of Pavia, 27100 Pavia, Italy; [email protected] 5 National Research Council, Institute of Heritage Science (ISPC), Section of Milan, 20125 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-50315621 Abstract: This study proposes new data on the rare pyroxene, variety violane, sampled from its Citation: Diella, V.; Bocchio, R.; type locality, Praborna manganese deposit, near Saint Marcel (Val d’Aosta, Italy). Violane is very Caucia, F.; Marinoni, N.; Langone, A.; Possenti, E. New Insights for appreciated as a gemstone for its different hues of violet-blue color and is characterized by its diop- Gem-Quality Mn-Bearing sidic or omphacitic composition. To assess the possible causes of color, electron-probe microanalysis Diopside-Omphacite, Violane Variety, (EMPA) and laser-ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) were used from Saint Marcel (Val D’Aosta, Italy): to establish the chemical composition. Raman and Fourier transform infrared (FTIR) spectroscopy, Its Trace Elements and ideal for the non-destructive analysis, identified the different present phases directly on gemstone. Spectroscopic Characterization. Raman and FTIR spectra highlighted the presence, in the same sample, of diopside and omphacite Minerals 2021, 11, 171. https:// showing almost inappreciable violet hue difference. The two minerals were easily differentiated by doi.org/10.3390/min11020171 microprobe analyses and showed a compositional heterogeneity not linked to the different colors. The best way to detect the color-causing elements in microcrystalline violanes resulted in the analysis Academic Editor: of trace elements and their quantification. An enrichment of Ti and Li characterizes darker violet Thomas Hainschwang omphacite and that of V and rare-earth elements (REE) the lilac-lavender or light violet-blue diopside. Received: 11 January 2021 Accepted: 1 February 2021 In general, our results led us to say that the color changes, previously proposed as due to Mn both Published: 7 February 2021 in divalent and trivalent oxidation state, may be controlled by trace elements or by concentration of minor elements, such as Fe, and their oxidation state. REE patterns showed a negative anomaly Publisher’s Note: MDPI stays neutral of Ce that could be ascribed to the variation of the oxygen chemical potential occurring in the ore. with regard to jurisdictional claims in The new data, combined with previous results, may provide new constrains on the processes that published maps and institutional affil- generated the Mn-rich deposit of Praborna. iations. Keywords: violane-pyroxene; gemology; Val d’Aosta; Western Alps; Italy Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. 1. Introduction This article is an open access article Pyroxene, variety violane (or violan) from the Mn-ore deposit of Praborna in Saint distributed under the terms and Marcel Valley (Valle d’Aosta Region, North Western Italy; WGS84 system: lat. 45◦40045” conditions of the Creative Commons N; long. 7◦26057” E) is a rare mineral in nature and has been considered as gem-quality Attribution (CC BY) license (https:// material since last century due to its beautiful color varying from purple-blue to violet. creativecommons.org/licenses/by/ In the catalogue of “Italian Type Minerals”, the violane of Praborna mine is quoted as “a 4.0/). Minerals 2021, 11, 171. https://doi.org/10.3390/min11020171 https://www.mdpi.com/journal/minerals Minerals 2021, 11, x FOR PEER REVIEW 2 of 21 first discovered in Italy [1]. However, this definition is not at all complete because many Minerals 2021, 11, 171 years ago, it was proved that the violet-blue clinopyroxenes from Praborna belong to2 oftwo 21 separate species: diopside, CaMg(Si2O6), and omphacite, (Ca,Na)(Mg,Fe,Al)(Si2O6), differ- ing both in composition and space group symmetry [2–5]. The Saint Marcel area is the most significant locality (type locality) for gem-quality rare light blue to purple, manganese-rich variety” of diopside, which is itself a mineral violane in the world, and actually, only few other occurrences are known, e.g., as orna- species first discovered in Italy [1]. However, this definition is not at all complete because mental blue diopside from different localities in Russia ([6] and references therein) or as many years ago, it was proved that the violet-blue clinopyroxenes from Praborna belong to massive aggregates from southern Baffin Island Nunavut, Canada [7] and from Vitali, two separate species: diopside, CaMg(Si2O6), and omphacite, (Ca,Na)(Mg,Fe,Al)(Si2O6), differingAndros Island, both in Greece composition [8]. and space group symmetry [2–5]. TheFine Saint material Marcel has areabeen is found the most in a significantlimited amount locality in a (type restricted locality) part for of gem-qualitythe Praborna violanemine (Figure in the 1), world, and andonly actually,a few pieces only have few otherbeen occurrencesset into jewelry. are known,In particular, e.g., as among orna- mentalcollectors blue and diopside jewelers, from there different are also localities known colorless in Russia quartz ([6] and cabochons references with therein) violane or asin- massiveclusion sampled aggregates in the from quartz-rich southern veins Baffin [9] Island (Figure Nunavut, 2). However, Canada both [7] the and veins from and Vitali, in- Androsclusions Island, of violane Greece are [rather8]. narrow (from millimetric to decimetric in size), therefore the materialFine materiallends itself has to been small found cabochons in a limited and amountcarvings. in To a restricted date, local part mineral of the Prabornacollectors minecontinue (Figure to work1), and the only deposit, a few and pieces it is havelikely been that setsmall into amounts jewelry. of In fine particular, violane will among con- collectorstinue to be and produced jewelers, in the there future. are also known colorless quartz cabochons with violane inclusionBecause sampled a study in theon the quartz-rich gemological veins properties [9] (Figure of2 this). However, very rare bothvariety the of veins pyroxene and inclusionsis lacking, ofand violane the chemical are rather and narrow physical (from data, millimetric except for the to decimetric more recent in work size), of therefore [10], are themore material than 40 lends years itself old, towe small prepared cabochons this review and carvings. and update To date, including local minerala complete collectors gemo- continuelogical characterization to work the deposit, together and itwith is likely newthat information small amounts concerning of fine trace violane element will continue profiles toand be Raman produced and in FTIR the future.spectroscopy. FigureFigure 1.1.Mine Mine andand landfilllandfill ofof PrabonaPrabona ( a(a)) and and collected collected samples samples ( b(b).). Because a study on the gemological properties of this very rare variety of pyroxene is lacking, and the chemical and physical data, except for the more recent work of [10], are more than 40 years old, we prepared this review and update including a complete gemological characterization together with new information concerning trace element profiles and Raman and FTIR spectroscopy. MineralsMinerals 20212021, 11, 11, x, FOR 171 PEER REVIEW 3 of3 of21 21 FigureFigure 2. 2. PendantPendant of of violane, violane, 3.5 3.5 cm cm × ×2.52.5 cm, cm, photo photo by by “Lutezia “Lutezia Gioielli, Gioielli, Stradella, Stradella, Pavia, Pavia, Italy”( Italy”a ()a and) and quartz quartz trillion trillion cut cut containingcontaining violet violet inclus inclusionsions of of violane, violane, 2.5 2.5 ct, ct, photo photo by by F. F. Caucia Caucia (b (b).). 2. Background Information 2. BackgroundThe Praborna Information mine occurs in the Zermatt-Saas meta-ophiolite unit of the Western Alps andThe formed Praborna as minehydrothermal occurs in thesediment Zermatt-Saas at the oceanic meta-ophiolite spreading unit center. of the In Western this area, Alps theand oceanic formed crust as hydrothermalwas subducted sediment and metamorpho at the oceanicsed upspreading to eclogite center.facies conditions In this area, dur- the ingoceanic the Eoalpine crust was high-pressure–low-temperatur subducted and metamorphosede phase up toof eclogitethe alpine facies orogenesis conditions [11–13]. during theThe Eoalpine deposit high-pressure–low-temperature is considered as the most important phase of and the famous alpine orogenesis Mn occurrence [11–13 of]. the PiemonteThe nappe deposit and is is considered constituted as by the boudinag most importanted quartz-rich and famous layers Mnwith occurrence Mn oxides ofand the silicates.Piemonte It also nappe contains and is a constituted few intercalations by boudinaged of metapelites
Recommended publications
  • Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Orthopyroxene–Omphacite
    Lithos 216–217 (2015) 1–16 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: Oxidation state controlled by high-P oxide fractionation☆ Timothy Chapman a,⁎, Geoffrey L. Clarke a, Nathan R. Daczko b,c, Sandra Piazolo b,c, Adrianna Rajkumar a a School of Geosciences, F09, University of Sydney, Sydney, NSW 2006, Australia b ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia c GEMOC, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia article info abstract Article history: The Breaksea Orthogneiss comprises a monzodioritic host partially recrystallised to omphacite–garnet–plagioclase– Received 19 December 2013 rutile granulite at 850 °C and 1.8 GPa, with metre to decametre-scale, cognate inclusions ranging from ultramafic Accepted 21 November 2014 through gabbroic to monzodioritic composition. Coarsely layered garnetite and diopsidic clinopyroxenite cumulate Available online 3 December 2014 preserves igneous textures, whereas garnet–omphacite cumulate shows a partial metamorphic overprint to eclogite. Garnet and omphacite in undeformed to weakly deformed rocks have similar major and rare earth element Keywords: characteristics reflecting their common igneous origin, pointing to a lack of metamorphic recrystallisation. Inclusions Omphacite–garnet granulite – – – Orthopyroxene eclogite of omphacite orthopyroxene plagioclase ulvöspinel orthogneiss have whole-rock compositions almost identical Omphacite–orthopyroxene granulite to the host monzodiorite. Reaction zones developed along contacts between the orthopyroxene-bearing inclusions REE and host contain metamorphic garnet that is microstructurally and chemically distinct from igneous garnet.
    [Show full text]
  • High-Pressure Single-Crystal Elasticity and Thermal Equation Of
    Journal of Geophysical Research: Solid Earth 10.1029/2018JB016964 2001). For example, D. Zhang et al. (2016) performed single‐crystal X‐ray diffraction (XRD) experiments on omphacite up to 47 GPa at 300 K. Pandolfo et al. (2012b) measured the thermal expansion coefficients of omphacite up to 1073 K at 1 atm. The only available in situ high P‐T EOS study for omphacite is performed on polycrystalline samples using multianvil press up to 10 GPa and thus is unable to cover the entire P stability field of omphacite in the Earth's interior (Nishihara et al., 2003). On the other hand, although the sound velocities of the Mg,Ca end member diopside have been studied at various P‐T conditions (Isaak et al., 2006; Isaak & Ohno, 2003; Levien et al., 1979; Li & Neuville, 2010; Matsui & Busing, 1984; Sang et al., 2011; Sang & Bass, 2014; Walker, 2012), the single‐crystal elastic properties of omphacite have only been measured at ambient condition (Bhagat et al., 1992) or investigated computationally at high‐P 0‐K conditions (Skelton & Walker, 2015). The lack of experimentally determined thermoelastic properties of omphacite, which is the most abundant mineral phase in eclogite, restricts our understanding of the subduction process as well as the possible seismic identification of eclogitic materials in the Earth's interior. To fill in this knowledge gap, we performed high P‐T single‐crystal XRD measurements on natural P2/n omphacite crystals up to 18 GPa 700 K at GeoSoilEnviroCARS (GSECARS), Advanced Photon Source, Argonne National Laboratory, as well as single‐crystal Brillouin spectroscopy measurements of the same crystals up to 18 GPa at 300 K at the high‐P laser spectroscopy laboratory at University of New Mexico (UNM).
    [Show full text]
  • Ultra-High Pressure Aluminous Titanites in Carbonate-Bearing Eclogites at Shuanghe in Dabieshan, Central China
    Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China D. A. CARSWELL Department of Earth Sciences, University of Sheffield, Sheffield $3 7HF, UK R. N. WILSON Department of Geology, University of Leicester, Leicester LE1 7RH, UK AND M. ZtIAI Institute of Geology, Academia Sinica, P.O. Box 634, Beijing 100029, China Abstract Petrographic features and compositions of titanites in eclogites within the ultra-high pressure metamorphic terrane in central Dabieshan are documented and phase equilibria and thermobarometric implications discussed. Carbonate-bearing eclogite pods in marble at Shuanghe contain primary metamorphic aluminous titanites, with up to 39 mol.% Ca(AI,Fe3+)FSiO4 component. These titanites formed as part of a coesite- bearing eclogite assemblage and thus provide the first direct petrographic evidence that AIFTi_IO_j substitution extends the stability of titanite, relative to futile plus carbonate, to pressures within the coesite stability field. However, it is emphasised that A1 and F contents of such titanites do not provide a simple thermobarometric index of P-T conditions but are constrained by the activity of fluorine, relative to CO2, in metamorphic fluids - as signalled by observations of zoning features in these titanites. These ultra-high pressure titanites show unusual breakdown features developed under more H20-rich amphibolite-facies conditions during exhumation of these rocks. In some samples aluminous titanites have been replaced by ilmenite plus amphibole symplectites, in others by symplectitic intergrowths of secondary, lower AI and F, titanite plus plagioclase. Most other coesite-bearing eclogite samples in the central Dabieshan terrane contain peak assemblage rutile often partly replaced by grain clusters of secondary titanites with customary low AI and F contents.
    [Show full text]
  • The Effect of Cation Order on the Elasticity of Omphacite from Atomistic Calculations
    This is a repository copy of The effect of cation order on the elasticity of omphacite from atomistic calculations. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85963/ Version: Accepted Version Article: Skelton, R and Walker, AM (2015) The effect of cation order on the elasticity of omphacite from atomistic calculations. Physics and Chemistry of Minerals, 42 (8). pp. 677-691. ISSN 0342-1791 https://doi.org/10.1007/s00269-015-0754-9 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 The effect of cation order on the elasticity of omphacite from atomistic calculations 2 Richard Skeltona,* and Andrew M. Walkerb,c 3 a Research School of Earth Sciences, Australian National University,
    [Show full text]
  • Cold Subduction and the Formation of Lawsonite Eclogite – Constraints from Prograde Evolution of Eclogitized Pillow Lava from Corsica
    J. metamorphic Geol., 2010, 28, 381–395 doi:10.1111/j.1525-1314.2010.00870.x Cold subduction and the formation of lawsonite eclogite – constraints from prograde evolution of eclogitized pillow lava from Corsica E. J. K. RAVNA,1 T. B. ANDERSEN,2 L. JOLIVET3 AND C. DE CAPITANI4 1Department of Geology, University of Tromsø, N-9037 Tromsø, Norway ([email protected]) 2Department of Geosciences and PGP, University of Oslo, PO Box 1047, Blindern, 0316 Oslo, Norway 3ISTO, UMR 6113, Universite´ dÕOrle´ans, 1A Rue de la Fe´rollerie, 45071 Orle´ans, Cedex 2, France 4Mineralogisch-Petrographisches Institut, Universita¨t Basel, Bernoullistrasse 30, 4056 Basel, Switzerland ABSTRACT A new discovery of lawsonite eclogite is presented from the Lancoˆne glaucophanites within the Schistes Lustre´ s nappe at De´ file´ du Lancoˆne in Alpine Corsica. The fine-grained eclogitized pillow lava and inter- pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter-pillow matrix consist of zoned idiomorphic Mg-poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth-type zoning with a Mn-rich core. In the inter-pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites.
    [Show full text]
  • A Comparative Study of Jadeite, Omphacite and Kosmochlor Jades from Myanmar, and Suggestions for a Practical Nomenclature
    Feature Article A Comparative Study of Jadeite, Omphacite and Kosmochlor Jades from Myanmar, and Suggestions for a Practical Nomenclature Leander Franz, Tay Thye Sun, Henry A. Hänni, Christian de Capitani, Theerapongs Thanasuthipitak and Wilawan Atichat Jadeitite boulders from north-central Myanmar show a wide variability in texture and mineral content. This study gives an overview of the petrography of these rocks, and classiies them into ive different types: (1) jadeitites with kosmochlor and clinoamphibole, (2) jadeitites with clinoamphibole, (3) albite-bearing jadeitites, (4) almost pure jadeitites and (5) omphacitites. Their textures indicate that some of the assemblages formed syn-tectonically while those samples with decussate textures show no indication of a tectonic overprint. Backscattered electron images and electron microprobe analyses highlight the variable mineral chemistry of the samples. Their extensive chemical and textural inhomogeneity renders a classiication by common gemmological methods rather dificult. Although a deinitive classiication of such rocks is only possible using thin-section analysis, we demonstrate that a fast and non-destructive identiication as jadeite jade, kosmochlor jade or omphacite jade is possible using Raman and infrared spectroscopy, which gave results that were in accord with the microprobe analyses. Furthermore, current classiication schemes for jadeitites are reviewed. The Journal of Gemmology, 34(3), 2014, pp. 210–229, http://dx.doi.org/10.15506/JoG.2014.34.3.210 © 2014 The Gemmological Association of Great Britain Introduction simple. Jadeite jade is usually a green massive The word jade is derived from the Spanish phrase rock consisting of jadeite (NaAlSi2O6; see Ou Yang, for piedra de ijada (Foshag, 1957) or ‘loin stone’ 1999; Ou Yang and Li, 1999; Ou Yang and Qi, from its reputed use in curing ailments of the loins 2001).
    [Show full text]
  • Eclogite Resembling Metamorphic Disequilibrium Assemblage Formed Through Fuid‑Induced Metasomatic Reactions Sanghoon Kwon1, Vinod O
    www.nature.com/scientificreports OPEN Eclogite resembling metamorphic disequilibrium assemblage formed through fuid‑induced metasomatic reactions Sanghoon Kwon1, Vinod O. Samuel1*, Yungoo Song1, Sung Won Kim2, Seung‑Ik Park3, Yirang Jang4 & M. Santosh5,6 Equilibrium omphacite‑garnet‑bearing mafc rocks have been classifed as eclogites, either pristine or retrogressed, that were formed at great depths in the lithosphere. Here we report a unique natural example of eclogite resembling assemblage in disequilibrium formed through fuid‑induced metasomatic reactions under the amphibolite to granulite facies. Primarily, the amphibolized protolith experienced a garnet‑amphibolite facies metamorphism at ~ 500–700 °C and ~ 0.8–1 GPa. Subsequently, CO2 fuid induced fracturing and dissolution‑reprecipitation reactions occurred at peak metamorphic conditions of ~ 700 °C and ~ 1 GPa. Occasional omphacite‑albite assemblage, which gradually replace diopside‑oligoclase symplectite adjacent to albite veins along fractures, indicates fuid‑induced coupled dissolution‑reprecipitation disequilibrium reactions. Here the albite‑omphacite assemblage is in local equilibrium at least on 1 mm length scale, during cooling, below ~ 600 ºC and ~ 1 GPa, within the amphibolite facies conditions. The results from this study clearly suggest that disequilibrium garnet‑omphacite assemblage in mafc rocks could be formed by crustal reworking processes below granulite facies conditions, and their textural equilibrium is an important criterion while defning eclogite facies. Eclogite facies metamorphic rocks formed through subduction and collision processes are common in global orogenic belts1–12 (e.g., Usagaran belt 1, Belomorian Belt2, Trans-Hudson orogen3, Grenvillian-Caledonian belt 4,5 Qinling–Dabie–Sulu belt6, Appalachian Orogenic Belt 7, Central Asian Orogenic Belt 8, Sambagawa belt 9, Alpine- Himalayan belt10,11, Franciscan complex12 etc.) created throughout Earth’s history.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • BURMESE JADE: the INSCRUTABLE GEM by Richard W
    BURMESE JADE: THE INSCRUTABLE GEM By Richard W. Hughes, Olivier Galibert, George Bosshart, Fred Ward, Thet Oo, Mark Smith, Tay Thye Sun, and George E. Harlow The jadeite mines of Upper Burma (now Myanmar) occupy a privileged place in the If jade is discarded and pearls destroyed, petty thieves world of gems, as they are the principal source of top-grade material. This article, by the first will disappear, there being no valuables left to steal. foreign gemologists allowed into these impor- — From a dictionary published during the reign of tant mines in over 30 years, discusses the his- Emperor K’ang Hsi (1662–1722 AD) , as quoted by Gump, 1962 tory, location, and geology of the Myanmar jadeite deposits, and especially current mining erhaps no other gemstone has the same aura of mys- activities in the Hpakan region. Also detailed tery as Burmese jadeite. The mines’ remote jungle are the cutting, grading, and trading of location, which has been off-limits to foreigners for jadeite—in both Myanmar and China—as P well as treatments. The intent is to remove decades, is certainly a factor. Because of the monsoon rains, some of the mystery surrounding the Orient’s this area is essentially cut off from the rest of the world for most valued gem. several months of the year, and guerrilla activities have plagued the region since 1949 (Lintner, 1994). But of equal importance is that jade connoisseurship is almost strictly a Chinese phenomenon. People of the Orient have developed jade appreciation to a degree found nowhere else in the world, but this knowledge is largely locked away ABOUT THE AUTHORS in non-Roman-alphabet texts that are inaccessible to most Mr.
    [Show full text]
  • Phase Composition and Genesis of Pyroxenic Jadeite from Guatemala: Insights from Cite This: RSC Adv., 2020, 10,15937 Cathodoluminescence
    RSC Advances View Article Online PAPER View Journal | View Issue Phase composition and genesis of pyroxenic jadeite from Guatemala: insights from Cite this: RSC Adv., 2020, 10,15937 cathodoluminescence Chenlu Lin, a Xuemei He, *a Zhiyun Lu b and Yuwei Yaoa Guatemalan jadeite has a long history, and much Guatemalan jadeite can be found on the market today with a variety of colors and species diversity. Seven varieties of green pyroxenic jadeite from Guatemala with greyish green, yellow green, brilliant green, blue green, dark green, black green and mottled green colors were investigated by combining the methods of XRD, Raman spectroscopy, cathodoluminescence, EPMA and m-XRF mapping. The results showed that according to the composition, Guatemalan pyroxenic jadeite can be divided into three categories: jadeite jade, omphacite jade, and jadeite– omphacite jade. According to the characteristics of cathodoluminescence, it can be speculated that the formation of jadeite undergoes three stages, and the formation of jadeite jade is mainly due to the Creative Commons Attribution-NonCommercial 3.0 Unported Licence. crystallization (Jad I) of the early jadeite fluid, along with the second-stage fluid metasomatism/ Received 24th February 2020 crystallization (Jad II). In the later stage, the fluid that is rich in Ca–Mg–Fe components can replace early Accepted 1st April 2020 Jad I/Jad II, or it can coexist with Jad II, and metamorphism occurs to produce omphacite jade. The DOI: 10.1039/d0ra01772h jadeite–omphacite jade can be formed when the omphacite fluid with incomplete metasomatism, with rsc.li/rsc-advances uneven texture and reduced transparency. 1. Introduction relatively pure, mainly being of space group C2/c.8,9 The C2/c space group has the general formula, M2M1{T2O6}.
    [Show full text]