Space, Sympatry and Speciation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detection of Cryptic Species Xa9846584
DETECTION OF CRYPTIC SPECIES XA9846584 A.F. COCKBURN, T. JENSEN, J.A. SEAWRIGHT United States Department of Agriculture, Agricultural Research Service, Medical and Veterinary Entomology Research Laboratory, Gainesville, Florida, USA Abstract Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes, most morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insects were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keep the individual genes homogeneous within a species. 1. INTRODUCTION Surprisingly, the problem of cryptic species has not received adequate attention in pest control. Two recent examples of important pests that are cryptic species are the silverleaf whitefly (originally thought to be the sweet potato whitefly), which has caused enormous economic damage in the US in the last few years, and was not described as a separate species until last year [1]; the fall armyworm, which was recently described as two species [2]. -
Curriculum Vitae
MAIRIN FRANCESCA ARAGONES BALISI La Brea Tar Pits and Museum, 5801 Wilshire Blvd, Los Angeles, CA 90036 [email protected] | mairinbalisi.com EDUCATION 2018 Ph.D., Ecology and Evolutionary Biology University of California, Los Angeles Dissertation: “Carnivory in the Oligo-Miocene: Resource specialization, competition, and coexistence among North American fossil canids” Advisor: Blaire Van Valkenburgh 2011 M.S., Ecology and Evolutionary Biology University of Michigan, Ann Arbor Thesis: “Dietary behavior and resource partitioning among the carnivorans of Late Pleistocene Rancho La Brea” 2008 B.A., Integrative Biology and Comparative Literature University of California, Berkeley PROFESSIONAL APPOINTMENTS 2019–present Research Affiliate University of Southern California / Natural History Museum of LA County 2018–present National Science Foundation Postdoctoral Research Fellow in Biology La Brea Tar Pits and Museum; University of California, Merced 2014–2018 Graduate Student in Residence, Vertebrate Paleontology Natural History Museum of Los Angeles County PUBLICATIONS ^equal contribution *undergraduate co-author 2020 Balisi MA and B Van Valkenburgh. Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades. Communications Biology 3:461. (doi:10.1038/s42003-020-01193-9) 2020 Tong, HW, X Chen, B Zhang, B Rothschild, SC White, MA Balisi, and X Wang. Hypercarnivorous teeth and healed injuries in Canis chihliensis from the early Pleistocene Nihewan beds, China, support social hunting for ancestral wolves. PeerJ 8:e9858. (doi:10.7717/peerj.9858) 2020 Dávalos, LM^, RM Austin^, MA Balisi^, RL Begay^, CA Hofman^, ME Kemp^, JR Lund^, C Monroe^, AM Mychajliw^, EA Nelson^, MA Nieves- Colón^, SA Redondo^, S Sabin^, KS Tsosie^, and JM Yracheta^. -
Sympatric Speciation: Models and Empirical Evidence
ANRV328-ES38-19 ARI 24 September 2007 7:20 Sympatric Speciation: Models and Empirical Evidence Daniel I. Bolnick1 and Benjamin M. Fitzpatrick2 1Section of Integrative Biology, University of Texas, Austin, Texas 78712; email: [email protected] 2Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996; email: benfi[email protected] Annu. Rev. Ecol. Evol. Syst. 2007. 38:459–87 Key Words First published online as a Review in Advance on assortative mating, disruptive selection, reinforcement August 8, 2007 reproductive isolation The Annual Review of Ecology, Evolution, and Systematics is online at Abstract http://ecolsys.annualreviews.org Sympatric speciation, the evolution of reproductive isolation with- This article’s doi: 10.1146/annurev.ecolsys.38.091206.095804 out geographic barriers, remains highly contentious. As a result of new empirical examples and theory, it is now generally accepted that Copyright c 2007 by Annual Reviews. All rights reserved sympatric speciation has occurred in at least a few instances, and is theoretically plausible. Instead, debate has shifted to whether sym- by Rutgers University Libraries on 09/21/09. For personal use only. 1543-592X/07/1201-0459$20.00 patric speciation is common, and whether models’ assumptions are generally met in nature. The relative frequency of sympatric spe- ciation will be difficult to resolve, because biogeographic changes have obscured geographical patterns underlying many past specia- Annu. Rev. Ecol. Evol. Syst. 2007.38:459-487. Downloaded from arjournals.annualreviews.org tion events. In contrast, progress is being made on evaluating the empirical validity of key theoretical conditions for sympatric spe- ciation. Disruptive selection and direct selection on mating traits, which should facilitate sympatric speciation, are biologically well supported. -
Local Adaptation Fuels Cryptic Speciation in Terrestrial Annelids’
bioRxiv preprint doi: https://doi.org/10.1101/872309; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: ‘Local adaptation fuels cryptic speciation in terrestrial annelids’ Running title: Local adaptation in cryptic terrestrial annelids Daniel Fernández Marchán1,2*, Marta Novo1, Nuria Sánchez1, Jorge Domínguez2, Darío J. Díaz Cosín1, Rosa Fernández3* 1 Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain. 2 Current address: Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, E-36310, Spain 3 Animal Biodiversity and Evolution Program, Institute of Evolutionary Biology (CSIC- UPF), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain. * Corresponding authors: [email protected], [email protected] Abstract bioRxiv preprint doi: https://doi.org/10.1101/872309; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between seventeen populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. -
Pliocene Origin, Ice Ages and Postglacial Population Expansion Have Influenced a Panmictic Phylogeography of the European Bee-Eater Merops Apiaster
diversity Article Pliocene Origin, Ice Ages and Postglacial Population Expansion Have Influenced a Panmictic Phylogeography of the European Bee-Eater Merops apiaster Carina Carneiro de Melo Moura 1,*, Hans-Valentin Bastian 2 , Anita Bastian 2, Erjia Wang 1, Xiaojuan Wang 1 and Michael Wink 1,* 1 Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (E.W.); [email protected] (X.W.) 2 Bee-Eater Study Group of the DO-G, Geschwister-Scholl-Str. 15, 67304 Kerzenheim, Germany; [email protected] (H.V.B.); [email protected] (A.B.) * Correspondence: [email protected] (C.C.d.M.M.); [email protected] (M.W.) Received: 20 August 2018; Accepted: 26 December 2018; Published: 15 January 2019 Abstract: Oscillations of periods with low and high temperatures during the Quaternary in the northern hemisphere have influenced the genetic composition of birds of the Palearctic. During the last glaciation, ending about 12,000 years ago, a wide area of the northern Palearctic was under lasting ice and, consequently, breeding sites for most bird species were not available. At the same time, a high diversity of habitats was accessible in the subtropical and tropical zones providing breeding grounds and refugia for birds. As a result of long-term climatic oscillations, the migration systems of birds developed. When populations of birds concentrated in refugia during ice ages, genetic differentiation and gene flow between populations from distinct areas was favored. In the present study, we explored the current genetic status of populations of the migratory European bee-eater. -
Micro-Evolutionary Change and Population Dynamics of a Brood Parasite and Its Primary Host: the Intermittent Arms Race Hypothesis
Oecologia (1998) 117:381±390 Ó Springer-Verlag 1998 Manuel Soler á Juan J. Soler á Juan G. Martinez Toma sPe rez-Contreras á Anders P. Mùller Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis Received: 7 May 1998 / Accepted: 24 August 1998 Abstract A long-term study of the interactions between Key words Brood parasitism á Clamator glandarius á a brood parasite, the great spotted cuckoo Clamator Coevolution á Parasite counter-defences á Pica pica glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of Introduction both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive Avian brood parasites exploit hosts by laying eggs in mechanisms: nest density and breeding synchrony in- their nests, and parental care for parasitic ospring is creased dramatically and rejection rate of cuckoo eggs subsequently provided by the host. Parasitism has a increased more slowly. A stepwise multiple regression strongly adverse eect on the ®tness of hosts, given that analysis showed that parasitism rate decreased as host the young parasite ejects all host ospring or outcom- density increased and cuckoo density decreased. A lo- petes them during the nestling period (Payne 1977; gistic regression analysis indicated that the probability Rothstein 1990). Thus, there is strong selection acting on of changes in magpie nest density in the study plots was hosts to evolve defensive mechanisms against a brood signi®cantly aected by the density of magpie nests parasite which, in turn, will develop adaptive counter- during the previous year (positively) and the rejection defences. -
What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science
What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species. -
Panmixia of European Eel in the Sargasso Sea
Molecular Ecology (2011) doi: 10.1111/j.1365-294X.2011.05011.x FROM THE COVER All roads lead to home: panmixia of European eel in the Sargasso Sea THOMAS D. ALS,*1 MICHAEL M. HANSEN,‡1 GREGORY E. MAES,§ MARTIN CASTONGUAY,– LASSE RIEMANN,**2 KIM AARESTRUP,* PETER MUNK,†† HENRIK SPARHOLT,§§ REINHOLD HANEL–– and LOUIS BERNATCHEZ*** *National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, DK-8600 Silkeborg, Denmark, ‡Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark, §Laboratory of Animal Diversity and Systematics, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium, –Institut Maurice-Lamontagne, Fisheries and Oceans Canada, PO Box 1000 Mont-Joli, QC G5H 3Z4, Canada, **Department of Natural Sciences, Linnaeus University, SE-39182 Kalmar, Sweden, ††National Institute of Aquatic Resources, Technical University of Denmark, DK-2920 Charlottenlund, Denmark, §§International Council for Exploration of the Sea, DK-1553 Copenhagen, Denmark, ––Institute of Fisheries Ecology, Johann Heinrich von Thu¨nen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Palmaille 9, 22767 Hamburg, Germany, ***De´partement de Biologie, Institut de Biologie Inte´grative et des Syste`mes (IBIS), Pavillon Charles-Euge`ne-Marchand, 1030, Avenue de la Me´decine, Universite´ Laval, QC G1V 0A6, Canada Abstract European eels (Anguilla anguilla) spawn in the remote Sargasso Sea in partial sympatry with American eels (Anguilla rostrata), and juveniles are transported more than 5000 km back to the European and North African coasts. The two species have been regarded as classic textbook examples of panmixia, each comprising a single, randomly mating population. However, several recent studies based on continental samples have found subtle, but significant, genetic differentiation, interpreted as geographical or temporal heterogeneity between samples. -
Systematics in Palaeontology
Systematics in palaeontology THOMAS NEVILLE GEORGE PRESIDENT'S ANNIVERSARY ADDRESS 1969 CONTENTS Fossils in neontological categories I98 (A) Purpose and method x98 (B) Linnaean taxa . x99 (e) The biospecies . 202 (D) Morphology and evolution 205 The systematics of the lineage 205 (A) Bioserial change 205 (B) The palaeodeme in phyletic series 209 (e) Palaeodemes as facies-controlled phena 2xi Phyletic series . 2~6 (A) Rates of bioserial change 2~6 (B) Character mosaics 218 (c) Differential characters 222 Phylogenetics and systematics 224 (A) Clade and grade 224 (a) Phylogenes and cladogenes 228 (e) Phylogenetic reconstruction 23 I (D) Species and genus 235 (~) The taxonomic hierarchy 238 5 Adansonian methods 240 6 References 243 SUMMARY A 'natural' taxonomic system, inherent in evolutionary change, pulses of biased selection organisms that themselves demonstrate their pressure in expanded and restricted palaeo- 'affinity', is to be recognized perhaps only in demes, and permutations of character-expres- the biospecies. The concept of the biospecies as sion in the evolutionary plexus impose a need a comprehensive taxon is, however, only for a palaeontologically-orientated systematics notional amongst the vast majority of living under which (in evolutionary descent) could organisms, and it is not directly applicable to be subsumed the taxa of the neontological fossils. 'Natural' systems of Linnaean kind rest moment. on assumptions made a priori and are imposed Environmentally controlled morphs, bio- by the systematist. The graded time-sequence facies variants, migrating variation fields, and of the lineage and the clade introduces factors typological segregants are sources of ambiguity into a systematics that cannot well be accommo- in a distinction between phenetic and genetic dated under pre-Darwinian assumptions or be fossil grades. -
Appendix A. Supplementary Material
Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma. -
Front Matter
Cambridge University Press 978-0-521-88318-4 - Speciation and Patterns of Diversity Edited by Roger K. Butlin, Jon R. Bridle and Dolph Schluter Frontmatter More information Speciation and Patterns of Diversity Bringing together the viewpoints of leading ecologists concerned with the processes that generate patterns of diversity, and evolutionary biologists who focus on mechanisms of speciation, this book opens up discussion in order to broaden understanding of how speciation affects patterns of biological diversity, especially the uneven distribution of diversity across time, space and taxa studied by macroecologists. The contributors discuss questions such as: Are species equivalent units, providing meaningful measures of diversity? To what extent do mechanisms of speciation affect the functional nature and distribution of species diversity? How can speciation rates be measured using molecular phylogenies or data from the fossil record? What are the factors that explain variation in rates? Written for graduate students and academic researchers, the book promotes a more complete understanding of the interaction between mechanisms and rates of speciation and these patterns in biological diversity. R OGER B UTLIN is Professor of Evolutionary Biology, Animal and Plant Sciences, at the University of Sheffield. He has held a prestigious Royal Society Research Fellowship at the University of Cardiff and his work has been recognized by honorary fellowships at the Natural History Museum, Zoological Society of London, and Royal Belgian Institute of Natural Sciences. J ON B RIDLE is Lecturer in Biology, in the School of Biological Sciences, University of Bristol. Since completing his PhD in Evolutionary Genetics in 1998, he has conducted research in quantitative genetics and evolutionary biology at University College London, University of Cardiff, Universidad Auto´ noma de Madrid, and the Institute of Zoology, London. -
Ecological Character Displacement and the Study of Adaptation
Commentary Ecological character displacement and the study of adaptation Jonathan B. Losos* Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130 he study of adaptation—a central is- Tsue in biology since before the time of Darwin—is currently enjoying a renais- sance. Ridiculed two decades ago as fol- lowing a panglossian paradigm (1) that Fig. 1. (Upper) Two sympatric promulgated ‘‘just so stories’’ rather than species with broadly overlapping distributions of resource use. If re- testing hypotheses, evolutionary biology sources are limiting, then natural has become a vibrant field in which a selection may favor individuals in wide variety of methods—ranging from each species with traits that allow molecular developmental biology to each of them to use that portion of manipulative field experiments—are used the resource spectrum not used by to rigorously test adaptive hypotheses (2). the other species, as indicated by Nowhere is this more evident than in the the arrows. (Lower) The result may study of ecological character displace- be that the species diverge in trait value and resource use, thus mini- ment; a paper by Adams and Rohlf (3) in mizing competition for resources. a recent issue of PNAS is one of a growing number of studies that have used integra- tive, multidisciplinary approaches and have demonstrated that ecological char- placement was seen as a powerful and enon for which few convincing examples acter displacement appears to be an pervasive force structuring ecological could be found (e.g., refs. 14–16). important ecological and evolutionary communities. These interpretations cor- These debates—unpleasant as they COMMENTARY phenomenon.