Site Scale Slow Moving Landslides: Characterization by Monitoring and Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Site Scale Slow Moving Landslides: Characterization by Monitoring and Modelling C Site scale slow moving landslides: characterization by monitoring and modelling TESIS DOCTORAL Presentada por Guadalupe Marina Bru Cruz para optar al grado de Doctor en Ciencias Aplicadas al Medio Ambiente Dirigida por: Jose A. Fernández-Merodo Jose Fernández Pablo González Científico titular de OPIs Profesor de Investigación, CSIC Lecturer in Geophysics Instituto Geológico y Minero Instituto de Geociencias (UCM- University of Liverpool de España (IGME) CSIC) ALMERÍA, OCTUBRE DE 2018 A mi tío José Manuel y a mi tía Guada To my uncle José Manuel and my aunt Guada All slopes that look like they are about to fail will eventually fail. All slopes that look stable, will also eventually fail. (Rule of thumb in slope stability evaluation, Karstein Lied, NGI) CONTENTS Acknowledgements ...................................................................................................................... 1 Resumen ......................................................................................................................................... 3 Abstract ........................................................................................................................................... 5 Introduction .................................................................................................................................... 7 Presentation ................................................................................................................................ 9 Motivation and objectives ......................................................................................................... 9 Studied landslides .................................................................................................................... 12 PhD Thesis structure and original contributions ................................................................ 13 1 State of the art ..................................................................................................................... 15 1.1 Landslide definition, classification and causes of failure ........................................ 17 Landslide nomenclature ...................................................................................... 17 Landslide classification ........................................................................................ 20 1.1.2.1 Activity ............................................................................................................... 20 1.1.2.2 Rate of movement ............................................................................................. 23 1.1.2.3 Water content ..................................................................................................... 24 1.1.2.4 Material............................................................................................................... 24 1.1.2.5 Type of movement ............................................................................................ 25 1.1.2.6 Magnitude .......................................................................................................... 26 Causes of slope failure ......................................................................................... 26 1.2 Landslide Monitoring ................................................................................................... 27 Monitoring techniques ......................................................................................... 28 Advanced differential SAR Interferometry technique .................................... 30 1.3 Landslide numerical modelling .................................................................................. 35 Modelling techniques ........................................................................................... 35 1.3.1.1 Limit equilibrium methods .............................................................................. 36 1.3.1.2 Advanced numerical methods ........................................................................ 37 FEM for 3D slow-moving site scale landslides models ................................... 37 2 A- DInSAR monitoring of landslide and subsidence activity: a case of ........................ urban damage in Arcos de la Frontera, Spain ............................................................... 39 2.1 Introduction ................................................................................................................... 41 2.2 Paper: A-DInSAR monitoring of landslide and subsidence activity: a ..................... case of urban damage in arcos de la frontera, spain ................................................. 45 Contents 3 Suitability assessment of X band satellite SAR data for geotechnical ........................... monitoring of site scale slow moving landslides .......................................................... 65 3.1 Introduction ................................................................................................................... 67 3.2 Paper: suitability assessment of X band satellite SAR data for .................................. geotechnical monitoring of site scale slow moving landslides ............................... 69 4 Site scale modelling of slow-moving landslides, a 3D viscoplastic ............................... finite element modelling approach ............................................................................... 107 4.1 Introduction ................................................................................................................. 109 4.2 Paper: Site scale modelling of slow-moving landslides, a 3D .................................... viscoplastic finite element modelling approach...................................................... 111 Discussion and Conclusions ..................................................................................................... 129 Summary of landslide site case studies characteristics..................................................... 131 Discussion ............................................................................................................................... 133 Main conclusions ................................................................................................................... 136 Future research lines.............................................................................................................. 137 Other scientific contributions ................................................................................................ 139 List of acronyms ........................................................................................................................ 141 Bibliography .............................................................................................................................. 143 1 ACKNOWLEDGEMENTS Quiero empezar agradeciendo a mi director, José Fernández, el haberme dado la oportunidad de realizar esta tesis, la confianza depositada en mí y el esfuerzo empleado para que todo saliera adelante. En segundo lugar a mis co-directores. Mencionar el rigor y honestidad científica de Jose Antonio Fernández-Merodo, y todo el apoyo que me ha brindado durante este tiempo. A Pablo González quiero agradecerle la generosidad, implicación y paciencia a la hora de enseñarme a procesar y programar durante mis estancias, sus consejos y su visión sobre la ciencia. Mis compañeros doctorandos Tamara y Joaquín han hecho que este camino sea mucho más ameno y han sido un gran apoyo. Gracias a Joaquín por su disposición y ayuda con el SAR. A Israel quiero agradecerle la compañía tan agradable de despacho y la ayuda con ArcGIS y óptico. A María el escucharme en los momentos de bajón y sus consejos científicos y profesionales. A Gema por su positividad y darme la oportunidad de dar clase, y al resto del grupo de investigación, Juan y Antonio. Quiero mencionar a los investigadores del IGME, con los que he colaborado durante la elaboración de este trabajo y que siempre me han demostrado una gran calidad científica y humana. Muy especialmente a Gerardo Herrera por todo el apoyo que me ha prestado desde mis primeros pasos en el mundo de la investigación, su visión para enfocar los trabajos y ejemplo de cómo crear un buen ambiente de equipo, siempre desde el buen humor. A Juan Carlos López- Davadillo, Rosa Mateos, Francisco J. Roldán y Marta Béjar por su inestimable ayuda y conocimientos. A Raúl Pérez-López por esos consejos que hacen a uno enfrentarse con la realidad incómoda y enfrentarla. Gracias a Alicia Arjona y Dani Monells por guiarme durante mis primeros pasos con el CPT. Al personal de EUROESTUDIOS, Antonio Morales, Belén Gascón y Miguel Ángel Avellaneda por sus contribuciones a los trabajos de Leintz-Gatzaga. Quiero agradecer al decano Antonio Brú la cesión del despacho mientras terminaba la tesis y a mi tutor en la Universidad de Almería Francisco Luzón por la ayuda prestada. Gracias a la gang de la escuela LARAM 2016, because you are awesome. Gracias a todos los amigos y familiares que han aguantado mis penas sobre la tesis estos años. A Alex y Fer por haber sido la mejor familia “de convivencia” que pueda imaginar. A todos los circenses que me alegráis la existencia cada día, en especial a Julia por entenderme tan bien. A mis almorranix valientes, los ingenieros geólogos y a las hijas del vaso de agua. A mis primas y pilares Ainhoa, Luisa, Karmele y Helena, y a mis sobrinos. A Adrián por caminar juntos de puntillas. Por encima de todo quiero agradecer a mis padres y a mi hermana la
Recommended publications
  • Insar Monitoring of Landslide Activity in Dominica
    remote sensing Article InSAR Monitoring of Landslide Activity in Dominica Mary-Anne Fobert 1,*, Vern Singhroy 2 and John G. Spray 1 1 Planetary and Space Science Centre, University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B 5A3, Canada; [email protected] 2 Canada Centre for Remote Sensing, 560 Rochester Street, Ottawa, ON K1S 5K2, Canada; [email protected] * Correspondence: [email protected] Abstract: Dominica is a geologically young, volcanic island in the eastern Caribbean. Due to its rugged terrain, substantial rainfall, and distinct soil characteristics, it is highly vulnerable to landslides. The dominant triggers of these landslides are hurricanes, tropical storms, and heavy prolonged rainfall events. These events frequently lead to loss of life and the need for a growing portion of the island’s annual budget to cover the considerable cost of reconstruction and recovery. For disaster risk mitigation and landslide risk assessment, landslide inventory and susceptibility maps are essential. Landslide inventory maps record existing landslides and include details on their type, location, spatial extent, and time of occurrence. These data are integrated (when possible) with the landslide trigger and pre-failure slope conditions to generate or validate a susceptibility map. The susceptibility map is used to identify the level of potential landslide risk (low, moderate, or high). In Dominica, these maps are produced using optical satellite and aerial images, digital elevation models, and historic landslide inventory data. This study illustrates the benefits of using satellite Interferometric Synthetic Aperture Radar (InSAR) to refine these maps. Our study shows that when using continuous high-resolution InSAR data, active slopes can be identified and monitored.
    [Show full text]
  • Use of Inclinometer for Landslide Identification with Relevance to Mahawewa Landslide
    Use of Inclinometer for Landslide Identification with Relevance to Mahawewa Landslide M.P.N.C. Amarathunga National Building Research Organization, Jawaththa Road, Colombo 05 R.M.S. Bandara National Building Research Organization, Jawaththa Road, Colombo 05 ABSTRACT: Instrumentation can be used to characterize the location of shallow and deep failure planes as well as measure the direction of landslide movement. Subsurface movements or ground deformations can be characterized in a variety of ways using different sensor technologies and data acquisition methods. Inclinometer can acquire subsurface movements automatically at frequent time intervals and provide a useful tool for geologists and engineers to enhance subsurface characterization, improve geotechnical design, and monitor construction activities in real time. The Mahawewa landslide is a massive slope failure that is partial reactivation of ancient landslide in Walapane of Nuwaraeliya District. In January 2007 and February 2011 the landslide was reactivated. From July 2010 to present, we have conducted monitoring of installed instrument and general geological inspection. Ongoing monitoring has revealed that the landslide movement continues after the 2007 reactivation and still continues movement can observed. We have identified two slip surfaces at the head of the landslide according to the analyzed inclinometer data. The landslide head shows a slump and the toe part is a debris flow. Therefore this can be categorized as a complex landslide. Both the acceleration stage and the failure stage of this landslide show correlation to rainfall. Hence to control this landslide have to control both surface and subsurface water. 1 INTRODUCTON with JICA and automatic rain gauges, Strain The Mahawewa landslide is a massive slope failure gauges, extensometers, inclinometer and that is partial reactivation of ancient landslide in piezometer were installed in Mahawewa area for Walapane of Nuwaraeliya District.
    [Show full text]
  • An Attempt of Earthquake Precursor & Deformation Monitoring by Means of Real-Time High Rate
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 901 AN ATTEMPT OF EARTHQUAKE PRECURSOR & DEFORMATION MONITORING BY MEANS OF REAL-TIME HIGH RATE GPS Matthias Becker1 and Radovan Marjanovic Kavanagh2 SUMMARY Until recently deformation monitoring was usually done by periodic geodetic position measurements of discrete points, which served for the determination of time dependent vectors. Alternative techniques with continuous data even in real-time using different electronic sensors, like extensometers or tilt meters, do not give the complete information about deformations with respect to a large scale reference frame. The only solution was a combination of different measuring techniques, methods and instruments, whereas a complete integration of all sensors into one consistent system is hardly possible. In the last few years GPS instrumentation evolved to a strong and accurate measuring tool. The modern GPS instrumentation allows high precision kinematic applications even in real-time. Additionally, a sampling rate of typical more than 5 Hz allows the use of the system even for applications with high velocities and accelerations. The major advantage of these systems is that they give 3D coordinate information down to millimeter resolution. This paper describes the conceptual design of the installation of a real-time kinematic GPS array on known points (where co-located measurements with other techniques took place) in a region near Zagreb, the capital city of Croatia. This region is known as a local earthquake hazardous region where a series of earthquakes took place during the past. Most of these earthquakes originated in the Earth's crust in depths of about 10-20 km.
    [Show full text]
  • Geology and Soils
    Section 3C Geology and Soils 3C.1 Summary The following is a summary of the proposed project’s potential impacts to geology and soils, any necessary mitigation measures, and the level of significance after mitigation. Significance Potential Impact Mitigation Measure(s) after Mitigation SANTIAGO HILLS II PLANNED COMMUNITY Potential Impact 3C-1. 2000 SEIR 1278 mitigation measures that continue to be applicable: Less than Exposure of People or MM G-1. All Grading Subject to City Grading Manual Regulations. significant Structures to Potential MM G-2. Removal of Unsuitable Earth Materials. Substantial Adverse Effects Including the Risk of Loss, MM G-3. Further Slope Stability Investigations. Injury, or Death Involving MM G-4. Detailed Geotechnical and Soil Engineering Reports. Rupture of a Known MM G-5. All Structures Designed and Constructed in Accordance Earthquake Fault; Strong with Seismic Safety Design Criteria. Seismic Ground Shaking; Seismic-related Ground MM 3C-1. Slopes Will Be Limited to 2:1. Failure, including MM 3C-2. Slopes Will Be Stabilized. Liquefaction; or Landslides MM 3C-3. Standard Grading Codes Will Be Applied. Potential Impact 3C-2. Location of Structures on a MM 3C-4. Compressible Soils Will Be Identified. Geologic Unit or Soil that is MM 3C-5. Compressible Soils Will Be Mitigated. Unstable, or that Would Become Unstable as a Result of the Project and Potentially Result in On- and Offsite Landslide, Lateral Spreading, Subsidence, Liquefaction, or Collapse Potential Impact 3C-3. No mitigation was included in 2000 SEIR 1278. Less than Substantial Soil Erosion or significant Loss of Topsoil MM 3C-6.
    [Show full text]
  • Existing Critical Tunnel Online Monitoring
    INSTRUMENTATION & MONITORING OF CRITICAL TUNNELLING INFRASTRUCTURE IN URBAN ENVIRONS Mr. Amod Gujral1 and Mr. Prateek Mehrotra2 1 Managing Director, Encardio-rite Group of Companies, A-7 Industrial Estate, Talkatora Road, Lucknow, UP-226011, India, [email protected] 2 Vice President Technical, Encardio-rite Group of Companies, A-7 Industrial Estate, Talkatora Road, Lucknow, UP-226011, India, [email protected] ABSTRACT As megacities struggle to provide infrastructure, residential and commercial spaces to its increasing number of residents in a limited land mass, existing structures- both surface and underground are bound to get affected by new constructions. In such a scenario, implementing an effective instrumentation and monitoring (I&M) programme for the structures within the zone of influence of construction, becomes extremely essential. Benefits of a well-executed I&M program are manifold- from providing design verification to ensuring safety during and after the construction. In the paper, the author presents a case study of I&M program executed by his organization in a megacity in the Middle East. An existing metro and a busy road tunnel under water were located within the zone of influence of the project’s construction activities. Ensuring their safety during the construction was on the top propriety of all project stakeholders as well as the asset owners. The paper starts off with a brief overview of the project with salient features of the construction methodologies deployed, followed by the instrumentation & monitoring scheme finalized by the project designers. Details of key parameters to be monitored and which instruments were selected for the purpose, has been described.
    [Show full text]
  • International Society for Soil Mechanics and Geotechnical Engineering
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Use of remote-sensing deformation monitoring for the assessment of levee section performance limit state Utilisation de la télédétection pour l'évaluation de l'état limite de la performance de la section des digues Victoria Bennett, Chung Nguyen, Tarek Abdoun Civil and Environmental Engineering, Rensselaer Polytechnic Institute, USA, [email protected] Amr Helal, Mohammed Gabr Civil, Construction and Environmental Engineering, North Carolina State University, USA Cathleen Jones, David Bekaert Radar Concepts and Formulation, NASA Jet Propulsion Laboratory, USA Joel Dudas Delta Special Investigations, California Department of Water Resources, USA ABSTRACT: Performance monitoring of the Sacramento Delta levee system on the network level and the assessment of exceeding potential limit states are needed for the maintenance and rehabilitation of this system. In this case, deformation needs to be assessed especially in view of the levees age, sea level rise, and ongoing subsidence due to the decomposition of the peat foundation layer. The work presented herein describes the remote sensing of a levee section deformation with time, which will ultimately be used for levee condition assessment. The levee section is located on Sherman Island, California and monitoring was conducted in situ by GPS, in addition to remote sensing by airborne synthetic aperture radar.
    [Show full text]
  • Tennessee Erosion & Sediment Control Handbook
    TENNESSEE EROSION & SEDIMENT CONTROL HANDBOOK A Stormwater Planning and Design Manual for Construction Activities Fourth Edition AUGUST 2012 Acknowledgements This handbook has been prepared by the Division of Water Resources, (formerly the Division of Water Pollution Control), of the Tennessee Department of Environment and Conservation (TDEC). Many resources were consulted during the development of this handbook, and when possible, permission has been granted to reproduce the information. Any omission is unintentional, and should be brought to the attention of the Division. We are very grateful to the following agencies and organizations for their direct and indirect contributions to the development of this handbook: TDEC Environmental Field Office staff Tennessee Division of Natural Heritage University of Tennessee, Tennessee Water Resources Research Center University of Tennessee, Department of Biosystems Engineering and Soil Science Civil and Environmental Consultants, Inc. North Carolina Department of Environment and Natural Resources Virginia Department of Conservation and Recreation Georgia Department of Natural Resources California Stormwater Quality Association ~ ii ~ Preface Disturbed soil, if not managed properly, can be washed off-site during storms. Unless proper erosion prevention and sediment control Best Management Practices (BMP’s) are used for construction activities, silt transport to a local waterbody is likely. Excessive silt causes adverse impacts due to biological alterations, reduced passage in rivers and streams, higher drinking water treatment costs for removing the sediment, and the alteration of water’s physical/chemical properties, resulting in degradation of its quality. This degradation process is known as “siltation”. Silt is one of the most frequently cited pollutants in Tennessee waterways. The division has experimented with multiple ways to determine if a stream, river, or reservoir is impaired due to silt.
    [Show full text]
  • Alto Deba – Deba Goiena)
    APROBACIÓN DEFINITIVA PLAN TERRITORIAL PARCIAL MONDRAGÓN - BERGARA (ALTO DEBA – DEBA GOIENA) LURRALDE ZATIKO PLANA BEHIN BETIKO ONARPENA TOMO I - DOC. 1: ESTUDIOS Y PLANOS DE INFORMACIÓN SUSTATZAILEA / PROMOTOR: EGILEAK / REDACTORES: Abril/ 2005 / Abril PLAN TERRITORIAL PARCIAL. LURRALDE ZATIKO PLANA MONDRAGÓN - BERGARA (ALTO DEBA – DEBA GOIENA) PROLOGO APROBACIÓN DEFINITIVA PLAN TERRITORIAL PARCIAL MONDRAGÓN – BERGARA (ALTO DEBA – DEBA GOIENA) LURRALDE ZATIKO PLANA BEHIN BETIKO ONARPENA ÍNDICE GENERAL: DOC I ESTUDIOS Y PLANOS DE INFORMACIÓN 0.- P R O L O G O 4 I.- EQUIPO REDACTOR............................................................................................................... 5 II.- INTRODUCCIÓN......................................................................................................................... 6 I.- INFORMACIÓN. DATOS BÁSICOS 7 1.- EL MEDIO FÍSICO....................................................................................................................... 8 1.1.- SITUACIÓN Y REFERENCIAS............................................................................................ 8 1.2.- CARACTERÍSTICAS GENERALES..................................................................................... 8 1.3.- ÁREAS DE INTERÉS........................................................................................................... 9 1.4.- CAPACIDAD DE ACOGIDA............................................................................................... 10 2.- DEMOGRAFÍA. INDICADORES SOCIOECONÓMICOS.........................................................
    [Show full text]
  • Preliminary Results on Potential Deformations Occurring on Slopes of Major Highways by Analyzing Sentinel 1 Images
    4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece PRELIMINARY RESULTS ON POTENTIAL DEFORMATIONS OCCURRING ON SLOPES OF MAJOR HIGHWAYS BY ANALYZING SENTINEL 1 IMAGES Elissavet Chatzicharalampous1, Constantinos Loupasakis2, Issaak Parcharidis3, Manolis Charalampakis4, Michaela-Maria Karathanou-Nicholaidi5 1 PhD Student, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9, Ir. Polytechniou str., 15780, Polytechnioupoli, Zografou, Athens, Greece, ([email protected]) 2 Associate Professor, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9, Ir. Polytechniou str., 15780, Polytechnioupoli, Zografou, Athens, Greece, ([email protected]) 3 Professor, Department of Geography, Harokopio University, office 4.3a new bld, 70El. Venizelou str., 17671, Kallithea, Athens, Greece, ([email protected]) 4 Civil Engineer, Egnatia Odos S.A., Thessaloniki, Greece, ([email protected]) 5 MSc Student, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9, Ir. Polytechniou str., 15780, Polytechnioupoli, Zografou, Athens, Greece, ([email protected]) Key words: Deformations, Highways, Slopes, Sentinel 1, Multitemporal SAR Interferometry ABSTRACT The use of satellite data and remote sensing methods is a common practice in order to monitor and study instability phenomena, the occurrence of which have large social and economic cost, especially when they affect inhabited areas and
    [Show full text]
  • LEINTZ GATZAGA / Salinas De Leniz HONDAKIN KUDEAKETA
    LEINTZ GATZAGA / Salinas de Leniz HONDAKIN KUDEAKETA KOKAPENA Leintz Gatzaga Gipuzkoako hegomendebaldeko muturrean dago, Araba eta Gipuzkoa arteko mugan. Leintz bailarako lehenengo herri hau Debagoieneko eskualdean dago. Izan ere, bailarari izena ematen dion ibaiak, Debak, Leintz Gatzagako lurretan du jaiolekua. HONDAKIN KUDEAKETA Leintz Gatzagako herritarrok sortzen ditugun hondakinen kudeaketa Debagoineko Mankomunitatearen esku dago. Mankomunitate hau Elgeta, Bergara, Antzuola, Oñati, Arrasate, Aretxabaleta, Eskoriatza eta Leintz Gatzagako udalak osatzen dugu, 62.720 biztanleei zerbitzua emanez. Mankomunitateak bakarrik zein udalekin batera era partekatuan bere gain hartzen du hondakinen kudeaketa. Bere baitan Ingurumen Zerbitzua kudeatzen du, beste gauzen artean, etxeetako zein hiri hondakinen bilketa, Arrasate, Bergara eta Oñatiko Garbiguneak, Garbigune Mugikorra, Epeleko hondakin inerteen zabortegia, azpiegiturak… Baliabideen, herritarren ohituereen eta zerbitzuen beharreen eboluzioari egokitzen den kudeaketa. http://www.debagoiena.eus/eu/ingurumena UDALERRIAREN ETA HONDAKIN KUDEAKETAREN EZAUGARRIAK Administrazioek behartuta gaude sortzen ditugun hondakinen kudeaketaren prebentzio eta optimizazioa sustatzera, hondakinik ez sortzeari lehentasuna emanez. Sortzen ditugun hondakinen ezaugarrien azterketa egin ostean, nabarmena da materia organikoaren kantitatea hiri-hondakin bezala, pisu totalaren % 40-50 izanik. Hau dela eta, 2014an erabaki zen hondakin honen kudeaketa tokian bertan burutzea, herrian erabili ahal izateko lehengaia bihurtuz
    [Show full text]
  • Inclinometer Monitoring System for Stability Analysis: the Western Slope of the Bełchatów Field Case Study
    Studia Geotechnica et Mechanica, Vol. 38, No. 2, 2016 DOI: 10.1515/sgem-2016-0014 INCLINOMETER MONITORING SYSTEM FOR STABILITY ANALYSIS: THE WESTERN SLOPE OF THE BEŁCHATÓW FIELD CASE STUDY MAREK CAŁA, JOANNA JAKÓBCZYK, KATARZYNA CYRAN AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, Phone: +48 12 617 46 95, e-mail: [email protected], [email protected]) Abstract: The geological structure of the Bełchatów area is very complicated as a result of tectonic and sedimentation processes. The long-term exploitation of the Bełchatów field influenced the development of horizontal displacements. The variety of factors that have impact on the Bełchatów western slope stability conditions, forced the necessity of complex geotechnical monitoring. The geotechnical monitoring of the western slope was carried out with the use of slope inclinometers. From 2005 to 2013 fourteen slope inclinometers were installed, however, currently seven of them are in operation. The present analysis depicts inclinometers situated in the north part of the western slope, for which the largest deformations were registered. The results revealed that the horizontal dis- placements and formation of slip surfaces are related to complicated geological structure and intensive tectonic deformations in the area. Therefore, the influence of exploitation marked by changes in slope geometry was also noticeable. Key words: slope inclinometer, geotechnical monitoring, horizontal displacement analysis, the exploitation influence, Bełchatów open pit mine 1. INTRODUCTION The aim of the borehole monitoring in the western slope of Bełchatów field was to measure the dis- placement values and their increments as with the The necessity of geotechnical monitoring in the function of the hole depth.
    [Show full text]
  • Logotipo EUSTAT
    EUSKAL ESTATISTIKA ERAKUNDA INSTITUTO VASCO DE ESTADÍSTICA Mirodata from the Estatistic on Marriages 2010 Description of file EUSKAL ESTATISTIKA ERAKUNDA INSTITUTO VASCO DE ESTADÍSTICA Microdata from the Estatistic on Marriages 2010 Description of file CONTENTS 1. Introduction........................................ ¡Error! Marcador no definido. 2. Criteria for selection of variables ........ ¡Error! Marcador no definido. 2.1 Criteria of sensitivity......................¡Error! Marcador no definido. 2.2 Criteria of confidentiality ................¡Error! Marcador no definido. 3. Registry design ................................... ¡Error! Marcador no definido. 4. Description of variables ...................... ¡Error! Marcador no definido. APPENDIX 1............................................ ¡Error! Marcador no definido. Microdata files request sheet 1 EUSKAL ESTATISTIKA ERAKUNDA INSTITUTO VASCO DE ESTADÍSTICA Microdata from the Estatistic on Marriages 2010 Description of file 1. Introduction The statistical operation on Marriages provides information on marriages that affects residents in the Basque Country. The files for the Estatistic on Marriages constitute a product for circulation that targets users with experience in analyzing and processing microdata. This format provides an added value to the user, permitting him or her to carry out data exploitation and analysis that, for obvious limitations, cannot be covered by current circulation in the form of tables, publications and reports. The microdata file corresponding to Marriages is described in this report. The circulation of the Marriages file with data from the first spouse combined with information on the second spouse is carried out on the basis of the usefulness and quality of the information that is going to be included as well as the interest for the user, because it is more beneficial for the person receiving the data to be able to work with them in a combined form.
    [Show full text]