AFFOA and Members Developed the First- Of-Its-Kind Advanced Functional Fiber with Embedded Optical Receivers and Transmitters Credit: IACMI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dod Manufacturing USA Institutes
DoD Manufacturing USA Institutes Small Business Briefings Ms. Tracy Frost Director, DoD Manufacturing Technology OUSD(R&E) Office of the Deputy Director for Strategic Technology Protection and Exploitation DISTRIBUTION F: Further dissemination only as directed by ODASD(MIBP) Manufacturing Technology Office (26 April 2018) or higher DoD authority. DoD ManTech Program MISSION: Anticipate and close gaps in manufacturing capabilities for affordable, timely, and low-risk development, production, and sustainment of defense systems. ManTech carries out its mission through programs in the Military Departments, participating Defense Agencies, and OSD DoD Manufacturing USA Institutes are executed out of OSD with support from the Services. Many additional DoD and other Federal agencies participate. Distribution A: Cleared for Public Release DoD Institutes Design Tenets Industry driven, public-private partnerships Investments in applied research Regional hubs of Required focus on and industrially- manufacturing education and relevant excellence with workforce manufacturing National Impact development needs technologies (cost-matched) Tenets meet key DoD ManTech requirements DISTRIBUTION A. Cleared for Public Release 5 DoD Manufacturing USA Institutes America Makes: The National Additive Manufacturing Innovation Institute Est. AUG 2012 (Youngstown, OH) • DoD MIIs part of Manufacturing USA: whole-of-government effort, in partnership Digital Manufacturing and Design Innovation with industry & academia Institute (DMDII) Est. FEB 2014 (Chicago, IL) • Strategically aligning resources to address targeted technology spaces LIFT - Lightweight Innovations For Tomorrow • Creating ‘industrial commons’ for Est. FEB 2014 (Detroit, MI) manufacturing R&D, workforce education and development AIM Photonics (photonic integrated circuits) Est. JUL 2015 (Albany, NY) • Catalyzing defense and broader industrial ‘innovation ecosystems’ across the nation NextFlex (flexible hybrid electronics) • Accelerating trust in supply chain Est. -
Workshop on Computational Physics and Materials Science
Workshop on Computational Physics and Materials Science: Total Energy and Force Methods 2020 Donostia-San Sebastián, Spain January 8-10, 2020 Institutional support and funding Preface This workshop is organized within the well-established “Total Energy and Force” conference series, which is held at ICTP in Trieste every odd year, and at a different place in the world every even year. The previous most recent workshops of this series outside Trieste took place in Barcelona (2012), Lausanne (2014), Luxembourg (2016) and Cambridge (2018). The main objective of this event is to identify new developments and topics in the field of electronic-structure methods from the first-principles perspective, their diverse applications, and its mathematical foundations. As such, it provides a great opportunity to assemble a wide range of leading scientists working on different aspects of computational material science. The workshop aims to cover the following topics: • Electron-phonon • Dielectrics • 2D materials • Correlation effects • Superconductivity • Topological materials • Transport properties • Excitations Organizing committee • Aran Garcia-Lekue, DIPC • Ivo Souza, UPV/EHU • Ion Errea, UPV/EHU Scientific advisory board • O. Akin-Ojo, University of Ibadan • E. Artacho, University of Cambridge & Nanogune • W. Andreoni, Ecole Polytechnique Fédérale de Lausanne • S. Biermann, Ecole Polytechnique, Palaiseau • R. Car, Princeton University • C. Filippi, University of Twente • M. Finnis, Imperial College • R. Gebauer, International Centre for Theoretical Physics • X.-G. Gong, Fudan University • J. Ihm, Seoul National University • E. Koch, Forschungszentrum Jülich • G. Kresse, University of Vienna • R. M. Martin, Stanford University • F. Mauri, University “La Sapienza” • A. Mostofi, Imperial College London • S. Narasimhan, JNCASR Bangalore • J. B. -
Nextflex Project Call 4.0 Guidebook
PROJECT CALL 4.0 Release Date: August 6, 2018 TABLE OF CONTENTS 1. FHE Definition 2. Introduction and Background 3. FHE Roadmap 4.0 4. Project Call Topics 4.1. Manufacturing Thrust Area (MTA) 4.2. Technology Platform Demonstrator (TPD) 5. Proposal Submission Process 5.1. Proposal Format Guidelines 5.2. Project Call 4.0 Timeline 5.3. Pre-Proposal Guidelines and Table of Contents 5.4. Full Proposal Guidelines and Table of Contents 6. Administrative Topics 6.1. Confidential Information 6.2. Financial and Cost Share Requirements 6.3. Work Requirements 6.4. Membership Requirements 7. Proposal Evaluation Criteria 7.1. General Overview and Guidelines 8. Contact Information 9. Reference Documents 10. Glossary of Terms Appendix A: Cover Sheet Template Appendix B: Instructions for Filling Out Proposal Cost Calculations Excel Workbook Appendix C: Pre-Proposal Evaluation Criteria Appendix D: Full Proposal Evaluation Criteria PROJECT CALL 4.0 SECTION 1. FHE DEFINITION This section is provided as an introduction to potential members of NextFlex® (“Institute” or “the Institute”) who may not be familiar with Flexible Hybrid Electronics (FHE) and the scope of our efforts in the Manufacturing USA network. NextFlex describes FHE as the intersection of additive circuitry, passive devices, and sensor systems that may be manufactured using printing methods (sometimes referred to as printed electronics) and thin flexible silicon chips or multichip interposer structures. These devices take advantage of the power of silicon and the economies and unique capabilities of printed circuitry to form a new class of devices for IoT, medical, robotics, consumer and communication markets. FHE devices conform to any shape, but are also bendable, twistable, and stretchable. -
Front Cover Sis V2.Indd 1 24/06/2014 11:56 LITHOGRAPHY SOLUTIONS for HIGH-VOLUME MANUFACTURING
Volume 36 Issue 2 2014 @siliconsemi www.siliconsemiconductor.net Directed self assembly Wafer cleaning legislation Innovation in materials recovery Getting more out of graphene Chip spending increases MEMS microphones Features, News Review, Industry Analysis, Research News and much more. Free Weekly E News round up , go to www.siliconsemiconductor.net Front Cover SiS v2.indd 1 24/06/2014 11:56 LITHOGRAPHY SOLUTIONS FOR HIGH-VOLUME MANUFACTURING Advanced Packaging for Logic and Memory Ultra-High Throughput and Productivity Mid-End and Back-End Interconnect Applications GET IN TOUCH to discuss your manufacturing needs www.EVGroup.com Untitled-1 1 26/03/2014 12:11 executiveview by Rich Rogoff, Vice President and General Manager, Lithography Systems Group, Rudolph Technologies, Inc. We must think “outside of the box” for new approaches in advanced packaging AS SEMICONDUCTOR DEVICES have continued to shrink Moving from round wafers to rectangular substrates in back- in size and grow in complexity, manufacturers have had to end advanced packaging saves corner space, delivering a develop advanced packaging techniques to accommodate roughly 10% improvement in surface utilization. In the case of the rapidly increasing number and density of connections lithography, the larger size of the substrate and the improved required to communicate with the outside world. Often these fit between the reticle and substrate can reduce the handling technologies have developed as adaptations of front-end and processing overhead by a factor of five. These productivity methods. While there is certainly value to be found improvements more than offset any potential reduction in using these well characterized processes, in throughput resulting from an increase in the number of we must be careful not to carry along old alignment points required for these larger substrates. -
Eindhoven University of Technology MASTER Concept Design for Reel To
Eindhoven University of Technology MASTER Concept design for reel to reel flex foil handling on a component mounting machine Wakker, R. Award date: 2005 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Concept design for reel to reel flex foil handling on a component mounting machine DCT 2005.93 Remko Wakker s454659 Concept design for reel to reel flex foil handling on a component mounting machine Master thesis committee: prof.dr.ir.M.Steinbuch chairmain dr.ir.P.C.J.N.Rosielle, coach TU/e ing.W.Wesseling, coach Assembl¶eon B.V. ir.F.G.A. Homburg TU/e TECHNISCHE UNIVERSITEIT EINDHOVEN DEPARTMENT OF MECHANICAL ENGINEERING SECTION CONTROL SYSTEMS TECHNOLOGY CONSTRUCTIONS AND MECHANISMS Eindhoven, 24th June 2005 Preface and acknowledgements This report describes the concept design for a reel to reel flex foil production line, that is developed during my Master thesis project at the Technische Universiteit Eindhoven, faculty Mechanical engineering, group Constructions and Mechanisms. -
Project Call 6.0 Guidebook B
PROJECT CALL 6.0 GUIDEBOOK Online Cover Sheet Submission Deadline: 3/29/2021 Proposal Submission Deadline: 4/6/2021 Original Release Date: February 15, 2021 v1.0 PROJECT CALL 6.0 PROJECT CALL 6.0 TABLE OF CONTENTS Preface 3 SECTION 1. FHE Definition ................................................................................................................ 3 SECTION 2. Introduction and Background .......................................................................................... 3 SECTION 3. FHE Roadmap – 2020 Update ........................................................................................ 6 SECTION 4. Project Call Topics .......................................................................................................... 7 4.1 NextFlex-Funded Topics .............................................................................................................. 8 4.2 DoD Agency-Funded Topics ...................................................................................................... 14 SECTION 5. PROPOSAL SUBMISSION PROCESS ......................................................................... 15 5.1 Project Call 6.0 Timeline ............................................................................................................ 15 5.2 Proposal Format Guidelines ...................................................................................................... 16 5.3 Proposal Guidelines ................................................................................................................. -
Call for Papers | 2022 MRS Spring Meeting
Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications. -
Policy Recommendations to Stimulate U.S. Manufacturing Innovation
POLICY RECOMMENDATIONS TO STIMULATE U.S. MANUFACTURING INNOVATION By Stephen Ezell Vice President for Global Innovation Policy, Information Technology and Innovation Foundation INTRODUCTION After dropping significantly in the Great Recession, inflation-adjusted.S. U manufacturing output has continued to decline as a share of gross domestic product (GDP), down 3.5 percent between 2009 and 2019 (0.41 percentage points), even with the strong cyclical rebound in the motor vehicle sector. While U.S. manufacturing performs adequately in a few sectors—such as primary metals, chemicals, computers and electronic products (including semiconductors)—most other sectors are smaller as share of the U.S. economy than they were a decade ago.1 To boost U.S. manufacturing output and innovation, effective manufacturing strategies—articulated at both the federal and state levels and underpinned by a suite of effective, specific policies—will be needed. This report first examines the underperformance of American manufacturing and then examines how a concerted suite of policies—focused on addressing strategy and analysis, technology development and diffusion, finance, tax, and talent challenges and opportunities—could be implemented to revitalize America’s manufacturing economy. THE STATE OF AMERICA’S MANUFACTURING ECONOMY Across a number of facets—from manufacturing value added, productivity, and employment to trade balances—America’s manufacturing economy continues to underperform its potential. Perhaps the most significant indicator is weakness in real U.S. manufacturing output, which has fallen as a share of GDP over the last decade. In fact, real manufacturing value added declined 13 percent from 2007 to 2019, from 13.2 percent of GDP to 11.5 percent. -
First Choice for Advanced Applications AT&S at a GLANCE
Thick Copper IMS ECP® HSMtec Multilayer mSAP Double sided PTH Flexible & Rigid Flexible 2.5D® High Frequency HDI Any-Layer Metal Core IC substrates HDI Microvia First choice for advanced applications AT&S AT A GLANCE AT&S is one of the world’s leading suppliers of high-value AT&S cultivates the tradition of European engineering in a printed circuit boards and IC substrates highly industrialised setting AT&S has the most advanced high-tech facility for mass pro- The Group spends more than 5% of its annual revenues on duction of HDI printed circuit boards in China, the centre of research and development, enabling it to anticipate the ap- electronics manufacturing. Other plants, in Austria, India and plications of tomorrow. Highly qualified employees as well as Korea, concentrate on small and medium-sized batches for numerous partnerships with universities and international industrial and automotive customers. research institutes ensure that these activities meet the re- quired standards of excellence. AT&S uses problem-solving skills to add value AT&S’s broad portfolio of technologies allows it to provide AT&S is committed to the highest quality standards cutting edge, user-orientated solutions – from prototypes to All of AT&S’s production facilities are certified in accordance printed circuit boards for rapid application in industrial man- with ISO 9001 and/or ISO/TS 16969. AT&S is one of only a ufacturing – acting as a one-stop-shop. This results in major handful of printed circuit board manufacturers that also has reductions in product development lead times for customers, certification according to the EN ISO 13845 standard for med- meaning that AT&S adds value for customers above and be- ical products and the EN 9100 for the aerospace industry. -
Advanced Manufacturing: Innovation Institutes Have Demonstrated Initial
United States Government Accountability Office Report to Congressional Committees May 2019 ADVANCED MANUFACTURING Innovation Institutes Have Demonstrated Initial Accomplishments, but Challenges Remain in Measuring Performance and Ensuring Sustainability GAO-19-409 May 2019 ADVANCED MANUFACTURING Innovation Institutes Have Demonstrated Initial Accomplishments, but Challenges Remain in Highlights of GAO-19-409, a report to Measuring Performance and Ensuring Sustainability congressional committees Why GAO Did This Study What GAO Found Manufacturing USA is a national Since December 2016, the Manufacturing USA network has grown from 11 to 14 network of manufacturing innovation manufacturing innovation institutes that are implementing a wide array of institutes. Commerce, DOD, and DOE activities aimed at developing manufacturing capabilities in promising new have together provided $1 billion to advanced technologies, as shown in the figure. As of March 2019, most institutes establish the network’s institutes and to were operating under an initial 5- to 7-year period of federal financial assistance. promote research, development, and commercialization of advanced Additive manufacturing (or 3D printing), an example of advanced manufacturing. manufacturing technologies. The Revitalize American Manufacturing and Innovation Act of 2014 includes a provision for GAO to assess the Manufacturing USA program. This is GAO’s second report in response to the provision. Among other objectives, this report (1) describes the status of the Manufacturing USA network; (2) evaluates actions taken by Commerce, DOD, and DOE to assess progress of The Department of Commerce, through a national program office, along with the the Manufacturing USA program; and Departments of Defense (DOD) and Energy (DOE) have developed long-term (3) examines planning for institute goals for the Manufacturing USA program, such as increasing the sustainability beyond the initial 5 to 7 competitiveness of U.S manufacturing, but have not developed measurable years of federal financial assistance. -
Report to Congress on Program Performance Fy 2017
REPORT TO CONGRESS ON PROGRAM PERFORMANCE FY 2017 About this Document As required by the Revitalize American Manufacturing and Innovation (RAMI) Act of 2014,1 this report describes the major accomplishments of Manufacturing USA in Fiscal Year 2017. This annual report documents progress in meeting the goals of the program as stated in its Strategic Plan.2 Copyright Protection This document is a work of the U.S. Government and is in the public domain (see 17 U.S.C. § 105). Disclaimer Statement Any mention of companies or commercial products within this document is for information only; it does not imply recommendation or endorsement by NIST or the other federal agencies participating in Manufacturing USA. Permissions All tables, figures, and photos in this report were produced by the Advanced Manufacturing National Program Office Interagency Working Team Participants, unless otherwise noted. Any permissions required for third party materials provided by institutes for this document are the responsibility of the reporting institutes. 1 Consolidated and Further Continuing Appropriations Act, 2015, Pub. L. 113-235, Title VII – Revitalize American Manufacturing and Innovation Act of 2014, codified at 15 U.S.C. § 278s, https://www.gpo.gov/fdsys/pkg/PLAW-113publ235/pdf/PLAW-113publ235.pdf. 2 N ational Network for Manufacturing Innovation Program Strategic Plan, Executive Office of the President, National Science and Technology Council, Advanced Manufacturing National Program Office (February 2016) https://www.manufacturingusa.com/resources/national- network-manufacturing-innovation-nnmi-program-strategic-plan. Manufacturing USA Program Performance — Annual Report to Congress, FY 2017 Advanced Manufacturing National Program Office National Institute of Standards and Technology United States Department of Commerce August 2018 i TABLE OF CONTENTS PROGRAM REPORT Message from the U.S. -
Development of Flexible and Functional Sequins Using Subtractive Technology and 3D Printing for Embroidered Wearable Textile Applications
materials Article Development of Flexible and Functional Sequins Using Subtractive Technology and 3D Printing for Embroidered Wearable Textile Applications Ramona Nolden * , Kerstin Zöll and Anne Schwarz-Pfeiffer Research Institute for Textile and Clothing, Hochschule Niederrhein-University of Applied Sciences, Webschulstraße 31, 41065 Mönchengladbach, Germany; [email protected] (K.Z.); [email protected] (A.S.-P.) * Correspondence: [email protected] Abstract: Embroidery is often the preferred technology when rigid circuit boards need to be con- nected to sensors and electrodes by data transmission lines and integrated into textiles. Moreover, conventional circuit boards, like Lilypad Arduino, commonly lack softness and flexibility. One approach to overcome this drawback can be flexible sequins as a substrate carrier for circuit boards. In this paper, such an approach of the development of flexible and functional sequins and circuit boards for wearable textile applications using subtractive and additive technology is demonstrated. Applying these techniques, one-sided sequins and circuit boards are produced using wax printing and etching copper-clad foils, as well as using dual 3D printing of conventional isolating and electri- cally conductive materials. The resulting flexible and functional sequins are equipped with surface mounted devices, applied to textiles by an automated embroidery process and contacted with a Citation: Nolden, R.; Zöll, K.; conductive embroidery thread. Schwarz-Pfeiffer, A. Development of Flexible and Functional Sequins Keywords: 3D printing; additive manufacturing; circuit boards; functional sequins; subtractive Using Subtractive Technology and 3D technology; wearable electronics Printing for Embroidered Wearable Textile Applications. Materials 2021, 14, 2633. https://doi.org/10.3390/ ma14102633 1.