Bio- and Chronostratigraphy of the Middle Triassic Reifling Formation of the Westernmost Northern Calcareous Alps

Total Page:16

File Type:pdf, Size:1020Kb

Bio- and Chronostratigraphy of the Middle Triassic Reifling Formation of the Westernmost Northern Calcareous Alps Research Collection Journal Article Bio- and chronostratigraphy of the Middle Triassic Reifling Formation of the westernmost Northern Calcareous Alps Author(s): Brühwiler, Thomas; Hochuli, Peter A.; Mundil, Roland; Schatz, Wolfgang; Brack, Peter Publication Date: 2007-12 Permanent Link: https://doi.org/10.3929/ethz-b-000158732 Originally published in: Swiss Journal of Geosciences 100(3), http://doi.org/10.1007/s00015-007-1240-2 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library 443_456_1240_bruehwiler 12.11.2007 10:08 Uhr Seite 443 1661-8726/07/030443-13 Swiss j. geosci. 100 (2007) 443–455 DOI 10.1007/s00015-007-1240-2 Birkhäuser Verlag, Basel, 2007 Bio- and chronostratigraphy of the Middle Triassic Reifling Formation of the westernmost Northern Calcareous Alps THOMAS BRÜHWILER1,*,PETER A. HOCHULI1,ROLAND MUNDIL2,WOLFGANG SCHATZ3 & PETER BRACK4 Keywords: Middle Triassic, Reifling Formation, Buchenstein Formation, biostratigraphy, U/Pb zircon dating ABSTRACT ZUSAMMENFASSUNG New finds of fossils including bivalves, ammonoids, brachiopods and paly- Neue Funde fossiler Muscheln, Ammonoideen, Brachiopoden und Palyno- nomorphs from the Middle Triassic Reifling Formation significantly improve morphen aus der mitteltriassischen Reiflinger Formation verbessern die Al- the age assignment for this unit in Liechtenstein and Vorarlberg. The lower tersbestimmung dieser Einheit in Liechtenstein und Vorarlberg massgeblich. part of the Reifling Formation is tentatively referred to the Late Anisian Der untere Teil der Formation wird provisorisch zur spätanisischen Paracera- Paraceratites trinodosus Zone and somewhat older levels, whereas the upper- tites trinodosus Zone und älteren Horizonten gestellt, während der obere Teil most part reaches the Ladinian Protrachyceras archelaus Zone (ammonoid bis in die ladinische Protrachyceras archelaus Zone (Ammonoideen-Zonie- zonation). The Middle Triassic successions of the study area are correlated rung) reicht. Die mitteltriassischen Sedimente des Untersuchungsgebietes with the coeval South Alpine reference section at Bagolino (Brescian Prealps), werden mit dem Referenzprofil von Bagolino (Brescianer Voralpen) korre- which also bears the Ladinian GSSP. The comparison shows that the Reifling liert, welches den GSSP des Ladinian beinhaltet. Dieser Vergleich zeigt, dass Formation in the study area is age-equivalent with the South Alpine Prezzo die Reiflinger Formation des Untersuchungsgebietes gleich alt wie der Süd- Limestone and the Buchenstein Formation. A volcanoclastic layer in the alpine Prezzokalk und die Buchensteiner Formation ist. Die radiometrische upper part of the Reifling Formation at Flexenpass yields a U-Pb zircon age of U-Pb-Datierung von Zirkonen aus einer vulkanischen Aschenlage aus dem 239.3 +/- 0.2 Ma. This value is slightly older than previously published mini- oberen Teil der Reiflinger Formation am Flexenpass ergibt ein Alter von mum ages from equivalent horizons in the Southern Alps; the difference is 239.3 +/- 0.2 Ma. Dieser Wert ist älter als bekannte Minimum-Alter von ent- thought to be mainly due to improved pre-treatment of zircons (annealing/ sprechenden Horizonten aus den Südalpen, und der Unterschied wird auf die chemical abrasion), which significantly reduces the effects of Pb loss. The new verbesserte Zirkon-Vorbehandlung (Sintern gefolgt von chemischer Abra- radio-isotope age further constrains the stratigraphical age of the Reifling For- sion) zurückgeführt, wodurch sich die Effekte von Blei-Verlust massgeblich mation and supports the proposed biostratigraphy-based correlation of Middle verringern lassen. Das neue Datum schränkt das stratigraphische Alter der Triassic successions in the Eastern and Southern Alps. Reiflinger Formation weiter ein und stützt die vorgeschlagene biostratigraphi- sche Korrelation mitteltriassischer Sedimente der Ost- und Südalpen. For the heterogeneous basinal successions biostratigraphi- Introduction cal information is as yet patchy and the resolution of published The Middle Triassic successions of the Northern Calcareous correlations of sections throughout the NCA is rarely better Alps (NCA) part of the Eastern Alps predominantly consist of than at a substage level (e.g. Bechstädt & Mostler 1976). Reli- shallow marine to basinal carbonates with subordinate interca- able age control is limited to a small number of horizons bear- lations of fine-grained clastic sediments (Tollmann 1985). Plat- ing age diagnostic macrofossils in a few sections such as those form carbonates and basinal deposits of Anisian to Carnian around Grossreifling in the eastern NCA (Summesberger & age occur in different tectonic nappe units but detailed recon- Wagner 1972, Tatzreiter 2001 and references therein). Out- structions of the original platfom-basin configuration are still crops of pelagic successions including condensed Hallstatt-type controversial (see Rüffer & Bechstädt 1995 for a discussion of limestones in the central NCA (e.g. Mandl 1984) produced the situation in the western NCA). Late Anisian to possibly Early Ladinian ammonoids reported 1 Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland. 2 Berkeley Geochronology Center, Berkeley, CA 94709, USA. 3 Didaktikzentrum der ETH Zürich, Sonneggstrasse 63, 8092 Zürich, Switzerland. 4 Departement Erdwissenschaften, ETH Zürich, 8092 Zürich, Switzerland. * Corresponding author: Thomas Brühwiler. E-mail: [email protected] Bio- and chronostratigraphy of the Reifling Formation 443 443_456_1240_bruehwiler 12.11.2007 10:08 Uhr Seite 444 long ago (Mojsisovics 1893; Diener 1900). In the southeastern ner 1984; Rüffer & Zühlke 1995). However, a quantified as- NCA Hallstatt-type limestones alternating with an interval sessment and comparison of the platform-basin evolution in similar to the Reifling Formation also yielded age diagnostic the NCA is seriously hampered by the lack of sufficiently pre- conodonts and daonellas (Leithner & Krystyn 1984). From the cise bio- and/or chronostratigraphical constraints. Middle Triassic successions of the NCA north of the Inn Val- In the Southern Alps the age constraints for Middle Trias- ley information on conodonts is available for a few coherent sic sediments have improved, especially in the past two basinal sections (Bechstädt & Mostler 1974; Donofrio et al. decades. In order to achieve better resolved correlations simi- 1979) as well as for isolated samples (Rüffer 1995). More re- lar progress is also required for data from the NCA. A re-as- cent and consistent conodont data, and a record of magnetic sessment of available older (bio-)stratigraphical information reversals, exist for a few sections of Late Anisian–Ladinian could help in this context, but substantial progress will depend pelagic carbonates (Reifling Formation) in the eastern NCA on the availability of accurately positioned additional fossils. (Gallet et al. 1998). In a step towards this goal we present and discuss new bio- and The Reifling Formation is a key stratigraphical interval of chronostratigraphical data from the Reifling Formation in the pelagic limestones with potential for significantly improved westernmost NCA, i.e. in Vorarlberg (Austria) and Liechten- age calibration. In basinal settings at some distance from co- stein. The new results are then compared with information eval carbonate platforms the stratigraphical thickness of this from the Bagolino reference section in the Lombardian part of unit seems to show little variation and usually ranges in the the Southern Alps. The study area was chosen because of its order of a few tens of metres. Siliceous nodular limestones of relatively uniform sedimentary successions including the basi- the Reifling Formation represent a peculiar facies, which can nal Reifling Formation for which essential stratigraphical in- hardly be distinguished from nodular limestones of the formation was readily available (Hirsch 1966; Kobel 1969). Buchenstein Formation in the Southern Alps. Both formations Moreover, recent palaeogeographical reconstructions (Brack also bear discrete layers of acidic volcanoclastic debris, often et al. 1999) suggest that, in Triassic times, the western NCA with a distinct greenish colour. In the Southern Alps several of were situated closer to the western (i.e. Lombardian) than to these so called Pietra Verde layers have been confirmed as pri- any other part of the Southern Alps. mary volcanic ash beds and such tephra layers turned out to be ideal markers for precise correlation of sections up to 200 kilo- Institutional abbreviation: PIMUZ, Paläontologisches Institut metres apart (Brack & Rieber 1993; Brack & Muttoni 2000). und Museum der Universität Zürich, Switzerland. Moreover, the stratigraphical distribution of the volcanoclastic layers allowed a geochronological framework to be established Setting, available age information and stratigraphy of the on the basis of U-Pb single zircon ages (Mundil et al. 1996a). Reifling Formation in the study area Therefore, if recorded with sufficient detail, the tuff beds in Middle Triassic successions of the NCA are expected to be The Middle Triassic successions of Vorarlberg and Liechten- similarly useful for correlation and radio-isotope dating. stein are relatively uniform, whereas the basinal successions in Although the nature of volcanoclastic beds has long been the
Recommended publications
  • Scanned Document
    Hugo ORTNER and Franz REITER KINEMATIC HISTORY OF THE TRIASSIC SOUTH OF THE INN VALLEY (NORTHERN CALCAREOUS ALPS, AUSTRIA) - EVIDENCE FOR JURASSIC AND LATE CRETACEOUS LARGE SCALE NORMAL FAULTING 3rd Workshop on Alpine Geological Studies Biella - Oropa, September 29th - October 1st 1997 Guido GOSSO, Flavio JADOUL, Mattia SELLA and Maria Iole SPALLA (Editors) 1999 from Mem. Sci. Geol. v. 51 / 1 pp. 129-140 16 figs Padova 1999 ISSN 0391-8602 Editrice Societa Cooperativa Tipografica PADOVA 1999 Kinematic history of the Triassic South of the Inn Valley (Northern Calcareous Alps, Austria) - Evidence for Jurassic and Late Cretaceous large scale normal faulting Hugo ORTNER and Franz REITER lnstitut for Geologie und Palaontologie, Universitiit Innsbruck, Innrain 52, A-6020 Innsbruck, Osterreich ABSTRACT - The geometry of slices at the southern margin of the Northern Calcareous Alps not only calls for thick­ ening of the nappe stack by compression, but also thinning of the sedimentary column by extension. The deforma­ tional history of the Triassic south of the Inn Valley is characterised by six stages: (1) Thinning by top SE extension during Jurassic continental breakup, (2) stacking of thinned slices by top NW thrusting during the time of peak tem­ perature metamorphism at 140 Ma (Early Cretaceous), (3) postmetamorphic top SE extension (Late Cretaceous) con­ temporaneously with Gosau sedimentation on top of the nappe pile of the Northern Calcareous Alps and (4) a long period of N-S compression (Eocene), resulting in northvergent thrusting and folding with development of a foliation , southvergent thrusting and, finally, overturning of the strata In the western part of the investigated area.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Middle Triassic Evolution of the Northern Peri-Tethys Area As Influenced by Early Opening of the Tethys Ocean
    Annates Societatis Geologorum Poloniae (2000), vol. 70: 1-48. MIDDLE TRIASSIC EVOLUTION OF THE NORTHERN PERI-TETHYS AREA AS INFLUENCED BY EARLY OPENING OF THE TETHYS OCEAN Joachim SZULC Institute o f Geological Sciences, Jagiellonian University, Oleandry Str. 2a, 30-063 Cracow, Poland, E-mail: szulc@ing. uj. edu.pl Szulc, J., 2000. Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys Ocean. Ann. Soc. Geol. Polon., 70: 1-48. Abstract: During Middle Triassic times, the Germanic or northern Peri-Tethys Basin pertained to the western Tethys Ocean. The basin was closed from the north and open toward the Tethys by tectonically controlled depressions (gates). The gates were opened in different times. The marine incursions broke first (as early as in late Scythian time) through the eastern gates and from the Polish Basin advanced gradually to the west. Semiclosed disposition of the basin resulted in its distinctive environmental diversification. Open marine environments developed along the southeastern margins which should be regarded as an integrate part of the Tethys Ocean rather than the epicontinental sea. Northward and westward from the Silesian and Carpathian domains the environments became more restricted. This resulted in significant facies diachronity between the western and eastern parts of the basin. As indicated by the faunal diversity, facies variability and geochemical properties of the sediments, during almost entire Anisian time the open marine sedimentation dominated in the eastern part while the western part displayed restricted circulation, typical for the semi-closed, evaporitic basin. The circulation reversed in Ladinian time when the westward shift of the tethyan spreading center gave rise to opening of the western gate.
    [Show full text]
  • Role of High-Angle Faults During Heteroaxial Contraction, Inntal Thrust Sheet, Northern Calcareous Alps, Western Austria
    Festschrift zum 60. Geburtstag von Helfried Mostler Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 20, S. 389^06 ROLE OF HIGH-ANGLE FAULTS DURING HETEROAXIAL CONTRACTION, INNTAL THRUST SHEET, NORTHERN CALCAREOUS ALPS, WESTERN AUSTRIA Gerhard Eisbacher & Rainer Brandner With 7 figures Abstract: During Late Cretaceous/two-stage contraction of sedimentary strata within the Austroalpine accretionary wedge initial fold-thrust detachment and subsequent heteroaxial shortening were controlled by low-strength stratigraphie heterogen- eities and by the propagation of transverse high-angle faults. For the Inntal thrust sheet of the Northern Calcareous Alps (NC A) about 20 km of NW-directed thrust movement was accompanied by internal shortening and by distributed dextral displacement along NW-striking transfer faults by about 15 to 20 km. Thrust sheet segmentation along high- angle transfer faults led to significant relief between stratal panels of variable vergence and accounts for local depositi- on in and patchy preservation of Upper Cretaceous syndeformational clastic basins. One of the authors (R.B.) inter- prets orogen-parallel striking normal faults with Upper Cretaceous scarp breccias as an indication of today's NW-SE extension of the early alpine nappe edifice. Superimposed NNE-SSW-oriented heteroaxial contraction in latest Cretaceous-Paleogene time by about 10 km reac- tivated initial transfer faults as high-angle reverse faults, with a new set of NE-striking high-angle sinistrai faults pro- pagating from the footwall into the frontal Inntal hangingwall. This increased the plunge of pre-existing folds and pro- duced a new set of plunging folds within fault-bounded panels. High-angle faults thus accommodated polyphase shor- tening of the NCA-wedge and superimposed basins that formed along transverse zones with major structural relief.
    [Show full text]
  • Field Trip B2: Triassic to Early Cretaceous Geodynamic History of the Central Northern Calcareous Alps (Northwestern Tethyan Realm)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): Gawlick Hans-Jürgen, Missoni Sigrid Artikel/Article: Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm). 216-270 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Field Trip B2: Triassic to Early Cretaceous geodynamic history of the central Northern Calcareous Alps (Northwestern Tethyan realm) Hans-Jürgen Gawlick & Sigrid Missoni University of Leoben, Department of Applied Geosciences and Geophysics, Petroleum Geology, Peter-Tunner-Strasse 5, 8700 Leoben, Austria Content Abstract 1 Introduction 2 Overall geodynamic and sedimentary evolution 3 Palaeogeography, sedimentary successions and stratigraphy 3.1 Hauptdolomit facies zone 3.2 Dachstein Limestone facies zone 3.3 Hallstatt facies zone (preserved in the reworked Jurassic Hallstatt Mélange) 4 The Field Trip 4.1 The Late Triassic Dachstein/Hauptdolomit Carbonate Platform 4.1.1 Hauptdolomit (Mörtlbach road) 4.1.2 Lagoonal Dachstein Limestone: The classical Lofer cycle (Pass Lueg) 4.1.3 The Kössen Basin (Pass Lueg and Mörtlbach road) 4.2 Jurassic evolution 4.2.1 Hettangian to Aalenian 4.2.2 Bajocian to Tithonian 4.3 Early Cretaceous References Abstract The topic of this field trip is to get to know and understand the sedimentation of Austria’s Northern Calcareous Alps and its tectonic circumstances from Triassic rifting/drifting to Jurassic collision/accretion, and the Early Cretaceous “post-tectonic” sedimentary history.
    [Show full text]
  • Jahrbuch Der Geologischen Bundesanstalt Jb
    JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb. Geol. B.-A. ISSN 0016-7800 Band 151 Heft 3+4 S. 199–280 Wien, Dezember 2011 Triassic Evolution of the Tectonostratigraphic Units of the Circum-Pannonian Region sándor Kovács1, miLan sudar2, Eugen Grădinaru3, Hans-Jürgen GawLicK4, stEvan Karamata5, JÁNOS HAAS1, CSABA PÉRÓ1, maurizio GaEtani6, Ján mello7, miLan PoLáK7, dunJa aljinović8, BOJAN OGORELEC9, tEa KoLar-JurKovšek9, boGdan JurKovšek9 & stanKo busEr10 19 Text-Figures, 7 Plates Paleoenvironments Pannonian Basin Carpathians Stratigraphy Neotethys Dinarides Triassic Alps Contents Zusammenfassung .......................................................................................201 Abstract ...............................................................................................201 Introduction ............................................................................................201 Triassic Stratigraphy and Evolution of Tectonostratigraphic Units ...................................................201 ALCAPA MEGAUNIT ......................................................................................201 Austroalpine – Western Carpathian Units ....................................................................201 Eastern Alps (Austroalpine Unit) .........................................................................201 Northern Calcareous Alps ............................................................................202 Bavaric Unit .....................................................................................203
    [Show full text]
  • Field Trip 8 Innsbruck´S Geology in a Nutshell: from the Hafelekar to the Hötting Breccia 215-228 Geo.Alp, Vol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geo.Alp Jahr/Year: 2016 Band/Volume: 013 Autor(en)/Author(s): Krainer Karl, Meyer Michael Artikel/Article: Field trip 8 Innsbruck´s geology in a nutshell: from the Hafelekar to the Hötting Breccia 215-228 Geo.Alp, Vol. 13 2016 215 - 228 Field trip 8 Innsbruck´s geology in a nutshell: from the Hafelekar to the Hötting Breccia Karl Krainer1 and Michael Meyer1 1 Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck 1 Introduction Alpen, southwest of Innsbruck Stubaier Alpen and north of Innsbruck Karwendel as part of the Hafelekar Spitze provides an excellent panora- Northern Calcareous Alps. mic overview of the main geologic units around The excursion starts at the cable railway station Innsbruck. The city of Innsbruck is located on an Hungerburgbahn next to the Innsbruck Congress alluvial fan which was formed by the Sill river at Centre (Fig. 1). The Hungerburgbahn will bring us its confluence with the Inn river. The mountain onto the Hungerburg terrace (868 m), from there group southeast of Innsbruck is termed Tuxer we continue with a cablecar (Seegrubenbahn ) to Fig. 1: Map showing excursion route to Hafelekar Spitze (Wetterstein Reef Complex) and Hungerburg – Alpenzoo (Hötting Breccia). 215 Figure 1 Seegrube (1905 m) and ascend Hafelekar (2260 m) composed of the famous Höttinger Breccie (see . via a second cablecar. From the top station of the excursion route part 2 – the Hötting Breccia) Hafelekarbahn the excursion route follows the The Valley which extends from Innsbruck to the trail to Hafelekar Spitze and continues East where Brennerpass in the south (Silltal-Wipptal) repre- the trail meets the Goetheweg, one of the most sents a big west-dipping normal fault (Brenner spectacular panoramic trails around Innsbruck.
    [Show full text]
  • Middle Triassic Conodonts from Israel, Southern France and Spain (1)
    Middle Triassic Conodonts from Israel, Southern France and Spain (1) von F. Hirsch*) *) Anschrift: F.Hirsch Geological Survey of Israel 30, Malkhe Yisrael St., Jerusalem, Israel. (1) This study was mainJy carried out at the Museum of Natural History, Geneva, with the aid of grant Nr. 2. 40. 68 of the Swiss national fund for scientific research. Mitt. Ges. GcoL Bcrgbaustud. 21. Bd. S.811-828 Innsbruck, 1972 Contens Introduction .„„.„ .. „ .. „.„ .. „ ...... „„„.. „ ... „.„.„ ... „ .. „.„„„ ......... „ .............. „„„ ....... „„ 813 Paleontology ....... „ ..... „ ... „ ............... „„.„ ... „„„.„„„„„„.„.„.„ ...... „ ............... „ .... „.. 814 Stratigraphy „.„.„ .. „ ... „.„ .. „.„„„„„.. „ ................... „ .. „„„ ................ „ .... „.„ ... „ .. „.... 817 Age „ .... „ ..... „.„ ..... „ ... „„ ..... „„.„ .... „.„ ....... „ ......... „ .... „„ ........ „„.„„„ .. „„„.„ .... „.„.. 820 Paleogeography . „ .. „. „ ... „ .„ .... „ „ .„ ... „„ ... „. „ „„ „„ .. „ „„. „„ „„ ..... „ ... „ .. „ ......... „ .. „. .. 820 Conclusions .. „.„ ................. „ .......... „ ......... „ ......... „ .. „ ........ „„...... „ .. „„ .. „.„„„.„„.„ 821 Rcferences cited .„ ..... „.„ ....•......... „.„„.„ .. „.„ ........ „„ ... „ ..... „ ........................... „.„.. 822 812 Hirsch: Middle Triassic Conodonts Zusammenfassung: Es werden Conodonten beschrieben aus Ladinischen ,,Muschelkalk"-Folgen in Israel, Provence (Südfrankreich), Katalanien, Menorka, Mallorka und Jaen (Spanien). Die zum Teil endemische Faunen-Vergesellschaftung ist charakteristisch
    [Show full text]
  • Retallack 2011 Lagerstatten
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates.
    [Show full text]
  • Mid-Triassic Integrated U–Pb Geochronology and Ammonoid Biochronology from the Balaton Highland (Hungary)
    Journal of the Geological Society, London, Vol. 160, 2003, pp. 271–284. Printed in Great Britain. Mid-Triassic integrated U–Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary) JO´ ZSEF PA´ LFY1, RANDALL R. PARRISH2,3, KARINE DAVID2,4 &ATTILAVO¨ RO¨ S 1 1Department of Geology and Palaeontology, Hungarian Natural History Museum, POB 137, Budapest, H-1431 Hungary (e-mail: [email protected]) 2NERC Isotope Geosciences Laboratory, Kingsley Durham Centre, Keyworth NG12 5GG, UK 3Department of Geology, University of Leicester, Leicester LE1 7RH, Leicester, UK 4Present address: Laboratoire Magmas et Volcans, CNRS UMR 6524, 5, rue Kessler 63038, Clermont-Ferrand, France Abstract: Ladinian (Middle Triassic) strata of the Balaton Highland (west–central Hungary) comprise interbedded marine carbonate and volcaniclastic rocks. The sediments are noted for their rich ammonoid faunas, which allow detailed biostratigraphic subdivision and correlation. For the first time, isotopic dating of the tuff layers was carried out to calibrate the age of ammonoid zones and subzones. Four successive horizons were dated from the Felso˝o¨rs section, a candidate stratotype for the base of the Ladinian stage. Within the Reitzi Zone, which is interpreted here as the basal Ladinian unit, the following biostratigraphically tightly constrained U–Pb zircon ages were obtained: Felsoeoersensis Subzone 241.1 Æ 0.5 Ma; Liepoldti Subzone 241.2 Æ 0.4 Ma; Reitzi Subzone 240.5 Æ 0.5 and 240.4 Æ 0.4 Ma. A redeposited tuff from the Gredleri Zone at Lite´r yielded an additional U–Pb age of 238.7 Æ 0.6 Ma. The new isotopic ages are in agreement with published U–Pb dates from the Southern Alps.
    [Show full text]