THE TEMPORAL ACTIVITY of IO's HOT SPOTS. Rosaly Lopes

Total Page:16

File Type:pdf, Size:1020Kb

THE TEMPORAL ACTIVITY of IO's HOT SPOTS. Rosaly Lopes Lunar and Planetary Science XXX 1741.pdf THE TEMPORAL ACTIVITY OF IO’S HOT SPOTS. Rosaly Lopes-Gautier1, W.D. Smythe1, A.S. McEwen2, P.E. Geissler2, ,A.G. Davies1, L. Kamp1, L.A. Soderblom3, R.W. Carlson1, L. Keszthelyi2, J.R. Spencer4, and the Galileo NIMS Team. 1Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109 ([email protected]). 2Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721. 3 U.S.Geological Survey, Flagstaff, Arizona 86001. 4 Lowell Observatory, Flagstaff, Arizona 86001. The Galileo and Galileo Europa Mission have pro- cant variation, perhaps the clearest of which is vided an unprecedented opportunity to monitor the whether they are long-lived or short-lived. Studies activity of Io’s hot spots. The NIMS instrument has from Voyager data by McEwen and Soderblom [3], re- observed Io at least twice during every Galileo orbit evaluated by McEwen et al. [1] show that several types around Jupiter. The Solid State Imaging System on of plume are present on Io: Prometheus-type plumes Galileo has also monitored the activity of the hot spots are long-lived, small, bright, and surrounded by by observing Io in eclipse [1]. During orbits G1 (June prominent white deposits. Other plumes appear to be 1996) to E16 (July 1998), NIMS and SSI detected 52 unique in character, such as Pele, Loki, Pillan, Acala, hot spots on Io. The combination of NIMS and SSI and Ra. SSI results show that Acala is so far the only data with data from Voyager, ground-based observa- stealth-type plume [4] detected on Io, though other tions (J. Spencer et al. 1997, C. Dumas, pers. comm.) plumes show similar characteristics. In the light of and observations from HST using NICMOS (J. Galileo SSI results, we think that plumes are best clas- Goguen, pers. comm.) have revealed 74 active vol- sified as Prometheus-type, unique, short-lived, or ab- canic centers on Io (73 hot spots plus the Ra Patera sent. The short-lived category pertains to locations plume), and 23 additional sites that were identified as where SSI detects a new plume deposit but no active probable active volcanic centers. In this paper, we plume. Our joint SSI and NIMS results have shown a examine what is known about the temporal behavior correlation between active plumes detected by Voyager of hot spots and activity styles in terms of (1) duration and Galileo and persistent hot spots, with the possible of activity; (2) presence or absence of plumes, and exception of the Masubi and Ra plumes. Masubi and duration of plume activity; (3) presence or absence of Ra may also be persistent hot spots, however, both ephemeral red deposits around hot spots; (4) magma locations are poorly observed by NIMS because of the temperature; and (5) variations in power output. geometry of Galileo’s orbits so there may be an obser- vational bias in the lack of detection of activity. A The long-range monitoring by Galileo NIMS and SSI plume (but no hot spot) was detected by SSI at Ra has allowed us to identify two types of hot spot activity during the first Galileo orbit, G1 [1]. NIMS did not in terms of duration: persistent and sporadic [2]. We observe Ra at that time and it is possible that the ac- define sporadic activity as those events that have tivity stopped after the first orbit, since no hot spots or lasted under 3 months, as observed by Galileo and plume has been detected at that location in subsequent from ground-based instruments. We cannot dismiss orbits. The Masubi plume was observed by Voyager the possibility that the activity at these hot spots is in 1979. Galileo SSI detected a new plume deposit persistent for longer durations, but falls to levels be- around Masubi in orbit E11 and, in the same orbit, low the detection limits of the instruments (for a filled NIMS detected a hot spot at that location. At present pixel, 180 K for NIMS and 700 K for SSI). We define we do not have enough temporal data to assess if Ma- persistent hot spots as those observed to be active for subi is a persistent hot spot. Apart from Masubi and periods longer than one year. We have so far identi- Ra, all other plumes locations coincide with locations fied 29 persistent hot spots, several of which were of persistent hot spots. Hot spots also differ in terms observed by Voyager and from ground-based observa- of presence or absence of red deposits. The combi- tions during the years between Voyager and Galileo. nation of SSI and NIMS data shows that there is a It is possible that the activity at these hot spots lasts correlation between red deposits surrounding persis- for considerably longer than 1 year, perhaps decades. tent hot spots and the presence of plumes [e.g. 2, 5]. The persistent hot spots are particularly important for our study of Io’s activity because they most likely rep- Another possible difference between activity styles at resent the major pathways of magma to Io’s surface. hot spots is magma temperature. One of the major questions posed by the Galileo results is whether the Hot spot activity also differs in terms of presence or very high temperatures observed at Pillan Patera [6] absence of plumes. Plumes themselves present signifi- are common on Io, or whether different hot spots ex- Lunar and Planetary Science XXX 1741.pdf IOS HOT SPOTS: R. Lopes-Gautier et al. hibit temperatures in the “basaltic” range and in the know that even more dramatic variations (outbursts) “ultramafic” range, possibly implying different occur at Loki and other hot spots [7]. magma compositions. Alternatively, the magmas in the “ultramafic” range may be superheated basalts. Data from NIMS, SSI, Voyager, ground-based tele- How common the high temperature magmas are on Io scopes, and HST form a powerful combination for is a particularly difficult problem to assess since the assessing the different styles of activity on Io and high temperature eruptions such as that at Pillan may finding correlations between the factors identified in not happen often, or cover sufficiently large areas to Table 1. Other factors that we will consider in future make their thermal emission detectable by Galileo at studies include hot spot albedo, temporal changes of the current spacecraft ranges. Data from the close Io low-albedo material and depth of the 0.9-micron ab- fly-bys late this year are needed to assess how wide- sorption feature identified by SSI [5]. In summary, we spread the very high temperatures observed at Pillan find: (1) A correlation between persistent activity and are on Io. presence of plumes and red deposits; (2) A concentra- tion of plumes and persistent hot spots at latitudes Variations in activity of hot spots in terms of power lower than 30 degrees, which is more consistent with output have been studied from ground-based observa- tidal heating occurring in the asthenosphere than in tions prior to Galileo. It has long been known that the deep mantle [2, see also abstract by Smythe et al., Loki undergoes periods of brightening and has been this volume]; (3) A variation in the power output of the site of giant outbursts and other outburst sites have persistent hot spots from NIMS data showing steady been detected from ground-based observations [see 7 output (Pele, Prometheus, Maui, Gish Bar), brighten- for a review]. Galileo data showed brightenings at ing (Malik, Tupan, Shamash), and fading (Amirani, Loki, Malik [2] and Pillan [1, 6]. Current data from Altjirra). These and other correlations between the NIMS and SSI indicate that Pele may have a fairly factors in Table 1 are important for undertanding Io’s constant brightness [see abstract by Davies et al., this surface (eruption styles, surface deposits), interior volume]. An important question is whether Io’s hot (tidal dissipation models), and atmosphere (plume spots present different, long-term activity styles rang- activity). ing from “steady” (e.g. Pele) to “outburst” (e.g. Loki) and whether these may be correlated with other varia- TABLE 1: Differences in activity at Io’s hot spots tions in style of activity. Duration Variation in Plume Temperature Red deposits power output activity range The large quantity and temporal coverage of NIMS ______________________________________________________ data can help us assess variations in power output of Persistent Outburst Absent “ultramafic” Prominent persistent hot spots. We use the NIMS spectrum for Sporadic Brightening Prometheus-type “basaltic” Faint Fading Short-lived Absent each hot spot (wavelength range 0.7 to 5.2 microns) to Steady Unique obtain a best-fit temperature and area. From these, we ______________________________________________________ calculate the total power output of hot spots to study their activity style. The observations used for this References: [1] McEwen, A.S. et al. 1998, Icarus preliminary study are from orbits G1, G2, G7, C9, 135, 181-219. [2] Lopes-Gautier et al. 1999, Icarus, E11, E15, and E16. All the hot spots were observed in press. [3] McEwen, A.S. and L. A. Soderblom by NIMS in darkness, with the exception of 5 hot 1983, Icarus 55, 191-217 [4] Johnson, T.V. et al. spots observed in orbit G2 in a sunlit observation. 1995, GRL 22, 3293-3296. [5] Geissler, P.E. et al. The reflected sunlight and thermal components of 1999, Icarus, in press. [6] McEwen, A.S. et al. 1998, radiation were separated in this observation [see ab- Science 281, 87-90. [7] Spencer, J.R., and N. Schnei- stract by Soderblom et al., this volume]. Our results der 1996, Annu. Rev.
Recommended publications
  • PDF Program Book
    46th Meeting of the Division for Planetary Sciences with Historical Astronomy Division (HAD) 9-14 November 2014 | Tucson, AZ OFFICERS AND MEMBERS ........ 2 SPONSORS ............................... 2 EXHIBITORS .............................. 3 FLOOR PLANS ........................... 5 ATTENDEE SERVICES ................. 8 Session Numbering Key SCHEDULE AT-A-GLANCE ........ 10 100s Monday 200s Tuesday SUNDAY ................................. 20 300s Wednesday 400s Thursday MONDAY ................................ 23 500s Friday TUESDAY ................................ 44 Sessions are numbered in the program book by day and time. WEDNESDAY .......................... 75 All posters will be on display Monday - Friday THURSDAY.............................. 85 FRIDAY ................................. 119 Changes after 1 October are included only in the online program materials. AUTHORS INDEX .................. 137 1 DPS OFFICERS AND MEMBERS Current DPS Officers Heidi Hammel Chair Bonnie Buratti Vice-Chair Athena Coustenis Secretary Andrew Rivkin Treasurer Nick Schneider Education and Public Outreach Officer Vishnu Reddy Press Officer Current DPS Committee Members Rosaly Lopes Term Expires November 2014 Robert Pappalardo Term Expires November 2014 Ralph McNutt Term Expires November 2014 Ross Beyer Term Expires November 2015 Paul Withers Term Expires November 2015 Julie Castillo-Rogez Term Expires October 2016 Jani Radebaugh Term Expires October 2016 SPONSORS 2 EXHIBITORS Platinum Exhibitor Silver Exhibitors 3 EXHIBIT BOOTH ASSIGNMENTS 206 Applied
    [Show full text]
  • Active Volcanism on Io: Global Distribution and Variations in Activity
    Icarus 140, 243–264 (1999) Article ID icar.1999.6129, available online at http://www.idealibrary.com on Active Volcanism on Io: Global Distribution and Variations in Activity Rosaly Lopes-Gautier Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 E-mail: [email protected] Alfred S. McEwen Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, P. O. Box 210092, Tucson, Arizona 85721-0092 William B. Smythe Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 P. E. Geissler Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, P. O. Box 210092, Tucson, Arizona 85721-0092 L. Kamp and A. G. Davies Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 J. R. Spencer Lowell Observatory, Flagstaff, Arizona 86001 L. Keszthelyi Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, P. O. Box 210092, Tucson, Arizona 85721-0092 R. Carlson Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 F. E. Leader and R. Mehlman Institute of Geophysics and Planetary Physics, University of California—Los Angeles, Los Angeles, California 90095 L. Soderblom Branch of Astrogeologic Studies, U.S. Geological Survey, Flagstaff, Arizona 86001 and The Galileo NIMS and SSI Teams Received June 23, 1998; revised February 10, 1999 in 1979. A total of 61 active volcanic centers have been identified Io’s volcanic activity has been monitored by instruments aboard from Voyager, groundbased, and Galileo observations. Of these, 41 the Galileo spacecraft since June 28, 1996. We present results from are hot spots detected by NIMS and/or SSI.
    [Show full text]
  • Insights Into Titans Geology and Hydrology Based on Enhanced
    JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Insights into Titan’s geology and hydrology based 10.1002/2013JE004584 on enhanced image processing of Cassini Key Points: RADAR data • We used a state-of-the-art technique Antoine Lucas1,2, Oded Aharonson1,3, Charles Deledalle4,5, Alexander G. Hayes1,6, Randolph Kirk7, for denoising the Cassini SAR images 7 • We provide new insights on and Elpitha Howington-Kraus Titan’s geology • Interactions of fluvial processes with 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Laboratoire topographic relief is quantified Astrophysique, Instrumentation et Modélisation, CNRS-UMR 7158, Paris VII-Denis Diderot University–CEA-SACLAY, Gif-sur-Yvette, France, 3Weizmann Institute of Science, Center for Planetary Science, Rehovot, Israel, 4Telecom, Paris-Tech, 5 6 Supporting Information: CNRS LTCI, Paris, France, Institut de Mathématiques de Bordeaux, Bordeaux, France, Spacecraft Planetary Imaging • Readme Facility, Cornell University, Ithaca, New York, USA, 7Astrogeology Branch, USGS, Flagstaff, Arizona, USA • Text S1 Abstract The Cassini Synthetic Aperture Radar has been acquiring images of Titan’s surface since Correspondence to: A. Lucas, October 2004. To date, 59% of Titan’s surface has been imaged by radar, with significant regions imaged [email protected] more than once. Radar data suffer from speckle noise hindering interpretation of small-scale features and comparison of reimaged regions for change detection. We present here a new image analysis technique Citation: that combines a denoising algorithm with mapping and quantitative measurements that greatly enhance Lucas, A., O. Aharonson, C. the utility of the data and offers previously unattainable insights. After validating the technique, we Deledalle, A.
    [Show full text]
  • A Map of Saturn's Largest Moon
    News in focus conducted in Guinea towards the end of the 2014–16 Ebola outbreak in West Africa. There, the vaccine was administered to people who had been in contact with someone who was infected with Ebola, and to their subsequent contacts. It was found to offer a high level of protection against infection. Health workers have used this strategy — known as ring vaccination — in the two other outbreaks in which rVSV-ZEBOV-GP had been deployed. But Heymann says it’s important to determine whether the Merck vaccine has other uses — for instance, preventive admin- istration to emergency health workers who might encounter Ebola in the distant future. For this, researchers will need to determine how long the vaccine’s protection lasts, and whether a ‘booster’ dose can extend HTTP://DOI.ORG/DFB8 (2019) HTTP://DOI.ORG/DFB8 immunity. Such studies are in the works with rVSV-ZE- BOV-GP and competing vaccines, says Adrian Hill, a vaccinologist at the University of Oxford, NATURE ASTRON. NATURE UK. “The question remains, which vaccine ET AL. would you give to, say, health-care workers to prevent them getting Ebola?” Merck’s product protects against the Zaire species of the Ebola virus, which is behind the current DRC outbreak and the 2014–16 SOURCE: R. M. C. LOPES R. M. C. LOPES SOURCE: West Africa outbreak. It will be important to develop vaccines against other species of the virus — especially the Sudan species, which has caused seven known outbreaks Astronomers have used data from NASA’s since 1976, says Hill, who helped to test A map of Saturn’s Cassini mission to map the entire surface an Ebola vaccine that the London-based of Titan, Saturn’s largest moon, for the first pharmaceutical company GlaxoSmithKline largest moon time.
    [Show full text]
  • Challenging the Paradigm: the Legacy of Galileo Symposium
    Challenging the Paradigm: The Legacy of Galileo Symposium November 19, 2009 California Institute of Technology Pasadena, California Proceedings of the 2009 Symposium and Public Lecture Challenging the Paradigm: The Legacy of Galileo NOVEMBER 19, 2009 CAHILL BUILDING - HAMEETMAN AUDITORIUM CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA, USA © 2011 W. M. KECK INSTITUTE FOR SPACE STUDIES, ISBN-13: 978-1-60049-005-07 CALIFORNIA INSTITUTE OF TECHNOLOGY ISBN-10: 1-60049-005-0 Sponsored by The W.M. Keck Institute for Space Studies Supported by The Italian Consulate – Los Angeles The Italian Cultural Institute – Los Angeles Italian Scientists and Scholars in North America Foundation The Planetary Society Organizing Committee Dr. Cinzia Zuffada – Jet Propulsion Laboratory (Chair) Professor Mike Brown – California Institute of Technology (Co-Chair) Professor Giorgio Einaudi – Università di Pisa Dr. Rosaly Lopes – Jet Propulsion Laboratory Professor Jonathan Lunine - University of Arizona Dr. Marco Velli – Jet Propulsion Laboratory Table of Contents Introduction……………………………………………………………………………….. 1 Galileo's New Paradigm: The Ultimate Inconvenient Truth…………………………... 3 Professor Alberto Righini University of Florence, Italy Galileo and His Times…………………………………………………………………….. 11 Professor George V. Coyne, S.J. Vatican Observatory The Galileo Mission: Exploring the Jovian System…………………………………….. 19 Dr. Torrence V. Johnson Jet Propulsion Laboratory, California Institute of Technology What We Don't Know About Europa……………………………………………………. 33 Dr. Robert T. Pappalardo Jet Propulsion Laboratory, California Institute of Technology The Saturn System as Seen from the Cassini Mission…………………………………. 55 Dr. Angioletta Coradini IFSI – Istituto di Fisica dello Spazio Interplanetario dell’INAF - Roma Solar Activity: From Galileo's Sunspots to the Heliosphere………………………….. 67 Professor Eugene N. Parker University of Chicago From Galileo to Hubble and Beyond - The Contributions and Future of the Telescope: The Galactic Perspective…………………………………………………….
    [Show full text]
  • About the Authors
    About the Authors Kevin H. Baines is a planetary scientist at the CalTech/Jet Propulsion Laboratory (JPL) in Pasadena, California and at the Space Science and Engineering Center at the University of Wisconsin-Madison. As a NASA-named science team member on the Galileo mission to Jupiter, the Cassini/Huygens mission to Saturn, and the Venus Express mission to Venus, he has explored the composition, structure and dynamic meteorology of these planets, discover- ing in the process the northern vortex on Saturn, a jet stream on Venus, the fi rst spectroscopi- cally-identifi able ammonia clouds on both Jupiter and Saturn, and the carbon-soot-based thunderstorm clouds of Saturn. He also was instrumental in discovering that the global envi- ronmental disaster caused by sulfuric acid clouds unleashed by the impact of an asteroid or comet some 65 million years ago was a root cause of the extinction of the dinosaurs. In 2006, he also re-discovered Saturn’s north polar hexagon—last glimpsed upon its discovery by Voyager in 1981—which in 2011 Astronomy magazine declared the third “weirdest object in the cosmos”. When not studying the skies and clouds of our neighboring planets, Kevin can often be found fl ying within those of the Earth as an avid FAA-certifi ed fl ight instructor, hav- ing logged over 8,000 h (nearly a full year) of fl ight time instructing engineers, scientists and even astronauts in the JPL/Caltech community. Jeffrey Bennett is an astrophysicist who has taught at every level from preschool through gradu- ate school. He is the lead author of college-level textbooks in astronomy, astrobiology, mathemat- ics, and statistics that together have sold more than one million copies.
    [Show full text]
  • Greetings from Your Planetary Sciences Section Leadership!
    November 2020 Newsletter Greetings from Your Planetary Sciences Section Leadership! Preparations for the AGU (virtual) Fall meeting are well underway and we are all busy recording talks and making posters. A virtual meeting is certainly a different experience and there are things that won’t work as well. For example, we have decided not to hold a Section reception this year, but look forward to seeing colleagues in person next year. Our Section will take part in a virtual student/early career event and our student and early career reps, Ashley and Sam, are working to organize a fun event. I’d like to take this opportunity to thank our corporate sponsors, Ball and Lockheed Martin. Your generous and continued support is deeply appreciated. We will “see” you all at Fall AGU. Stay safe. Rosaly Lopes, President Michael Mischna, President-Elect David Williams, Secretary Sam Birch, Early Career Representative Ashley Schoenfeld, Student Representative Sarah Stewart, Past President Upcoming Deadlines & Events For the latest Planetary Sciences updates and events, please visit the section calendar. Upcoming Deadlines (Delays because of COVID-19 Coronavirus National Emergency in RED) • ROSES-2020: Solar System Workings, Step-1 proposals: Due November 13, 2020. • ROSES-2020: Mars Data Analysis, Step-2 proposals: Due November 20, 2020. • ROSES-2020: Planetary Instrument Concepts for the Advancement of Solar System • Observations (PICASSO), Step-2 proposals: Due November 20, 2020. • ROSES-2020: Lunar Data Analysis, Step-1 proposals: Due December 1, 2020. • ROSES-2020: Planetary Science Early Career Awards proposals: Due December 8, 2020. Upcoming Conferences (2020) (All October conferences made virtual because of COVID-19) • Nov 16-17: VEXAG Annual Meeting [Virtual Meeting] • Nov 17-19: 3rd Interstellar Probe Exploration Workshop [Virtual Meeting] • Dec 7-11: Fall AGU Meeting [Virtual Meeting] Planetary Sciences Announcements/Updates 1.
    [Show full text]
  • Innovation and Competitiveness: Keys to Our Nation's Prosperity
    January 2007, Issue 3 Innovation and Competitiveness: Keys to our Nation’s Prosperity Recommendations for Scientists, Technicians, Engineers, and Mathematicians For the last year, I was This nation must prepare with great urgency an Albert Einstein to preserve its strategic and economic security. Distinguished Educator Because other nations have, and probably will Fellow in the office continue to have, the competitive advantage of a Congressman Rush Holt, low wage structure, the United States must compete one of two physicists by optimizing its knowledge-based resources, in Congress. When I particularly in science and technology, and by arrived in Washington, sustaining the most fertile environment for new and Members of Congress revitalized industries and the well-paying jobs they and key stakeholders bring (pg. 4). were talking about Tom Friedman’s book The A strong education system which produces citizens World Is Flat, as well with the capability to think critically and make as multiple reports of informed decisions—based on technical and scientific a similar nature. The information—as well as which nurtures students books and reports tend who pursue innovative and creative work in scientific to agree that there is an and technical fields, is critical in a knowledge-driven emerging global knowledge economy that will include economy. knowledge creators and users, as well as those who supply the resources to create, use, and share knowledge. In 2001 our high school graduation rate was 68%, with Our ability to prosper in this global community is students from historically disadvantaged minority dependent on our ability to be active participants in groups having a 50-50 chance of graduating.
    [Show full text]
  • International Astronomical Union Union Astronomique Internationale
    INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE ************ IAU0915: FOR IMMEDIATE RELEASE 6 AUGUST 2009 20:00 CEST ************ www.iau.org/public_press/news/release/iau0915/ Surface features on Titan form like Earth’s, but with a frigid twist 6 August 2009, Rio de Janeiro: Saturn’s haze-enshrouded moon Titan turns out to have much in common with Earth in the way that weather and geology shape its terrain, according to two pieces of research to be presented at the XXVII General Assembly of the International Astronomical Union (IAU) in Rio de Janeiro, Brazil. Wind, rain, volcanoes, tectonics and other Earth-like processes all sculpt features on Titan’s complex and varied surface in an environment more than 100 °C colder on average than Antarctica. “It is really surprising how closely Titan’s surface resembles Earth’s,” says Rosaly Lopes, a planetary geologist at the Jet Propulsion Laboratory (JPL) in Pasadena, California, who is presenting the results on Friday, 7 August. “In fact, Titan looks more like the Earth than any other body in the Solar System, despite the huge differences in temperature and other environmental conditions.” The joint NASA/ESA/ASI Cassini–Huygens mission has revealed details of Titan’s geologically young surface, showing few impact craters, and featuring mountain chains, dunes and even “lakes”. The RADAR instrument on the Cassini orbiter has now allowed scientists to image a third of Titan’s surface using radar beams that pierce the giant moon’s thick, smoggy atmosphere. There is still much terrain to cover, as the aptly named Titan is one of the biggest moons in the Solar System, larger than the planet Mercury and approaching Mars in size.
    [Show full text]
  • A Assessment Study Report ESA Contribution to the Titan Saturn
    ESA-SRE(2008)4 12 February 2009 N ITU LEMENTS ESA Contribution to the Titan Saturn System Mission Assessment Study Report a TSSM In Situ Elements issue 1 revision 2 - 12 February 2009 ESA-SRE(2008)4 page ii of vii C ONTRIBUTIONS This report is compiled from input by the following contributors: Titan-Saturn System Joint Science Definition Team (JSDT): Athéna Coustenis (Observatoire de Paris- Meudon, France; European Lead Scientist), Dennis Matson (JPL; NASA Study Scientist), Candice Hansen (JPL; NASA Deputy Study Scientist), Jonathan Lunine (University of Arizona; JSDT Co- Chair), Jean-Pierre Lebreton (ESA; JSDT Co-Chair), Lorenzo Bruzzone (University of Trento), Maria-Teresa Capria (Istituto di Astrofisica Spaziale, Rome), Julie Castillo-Rogez (JPL), Andrew Coates (Mullard Space Science Laboratory, Dorking), Michele K. Dougherty (Imperial College London), Andy Ingersoll (Caltech), Ralf Jaumann (DLR Institute of Planetary Research, Berlin), William Kurth (University of Iowa), Luisa M. Lara (Instituto de Astrofísica de Andalucía, Granada), Rosaly Lopes (JPL), Ralph Lorenz (JHU-APL), Chris McKay (Ames Research Center), Ingo Muller-Wodarg (Imperial College London), Olga Prieto-Ballesteros (Centro de Astrobiologia- INTA-CSIC, Madrid), François Raulin LISA (Université Paris 12 & Paris 7), Amy Simon-Miller (GSFC), Ed Sittler (GSFC), Jason Soderblom (University of Arizona), Frank Sohl (DLR Institute of Planetary Research, Berlin), Christophe Sotin (JPL), Dave Stevenson (Caltech), Ellen Stofan (Proxeny), Gabriel Tobie (Université de Nantes), Tetsuya
    [Show full text]
  • ROSALY M. C. LOPES Jet Propulsion Laboratory, California Institute Of
    ROSALY M. C. LOPES Jet Propulsion Laboratory, California Institute of Technology Mail Stop 183-601 4800 Oak Grove Drive Pasadena, CA 91109 (818) 393-4584/FAX (818) 393-3218 email: [email protected] JPL websites: http://science.jpl.nasa.gov/people/Lopes/ https://women.jpl.nasa.gov/rosaly-lopes.html NATIONALITIES: U.S., U.K., and Brazil EDUCATION: Ph.D.: Planetary Science (Board of Physics), 1986, University College (University of London, UK). "Comparative Studies of Volcanic Features on Earth and Mars". B.Sc. (Hons Lon): Astronomy, 1978, University College (University of London, UK). PRESENT POSITION: Senior Research Scientist, JPL, Earth and Space Sciences Division Major current roles: Manager, Planetary Science Section Investigation Scientist, Cassini Radar Team Principal Investigator, Cassini Data Analysis Program Co-Investigator, JANUS camera on JUICE Main current responsibilities: Editor-in-Chief for the planetary science journal Icarus Investigation Scientist for the Cassini Titan Radar Mapper instrument on the Cassini Project. Research on Titan’s geology and cryovolcanism in particular using data from Cassini. Research on Io’s volcanic activity using Galileo and New Horizons infrared and imaging data. Main fields of expertise: Planetary geology and volcanology, with particular expertise on Io and Titan and analysis of data from flight projects (Galileo, Cassini, New Horizons). Approach to research: Use of remote sensing data collected from spacecraft to further develop theoretical models of surface processes, in close collaboration with instrument investigations. Recent research efforts have been directed towards: (i) Analysis of Io's infrared spectra obtained by Galileo’s Near-Infrared Mapping Spectrometer (NIMS) (ii) Analysis of geologic features on Titan using the Cassini Radar Mapper, with particular emphasis on cryovolcanic features.
    [Show full text]
  • Cassini-Huygens Solstice Mission
    Draft White paper for Solar System Decadal Survey 2013- 2023 Cassini-Huygens Solstice Mission Linda Spilker Jet Propulsion Laboratory [email protected] 818-354-1647 Robert Pappalardo (JPL); Robert Mitchell (JPL); Michel Blanc (Observatoire Midi-Pyrenees); Robert Brown (Univ. Arizona); Jeff Cuzzi (NASA/ARC); Michele Dougherty (Imperial College London); Charles Elachi (JPL); Larry Esposito (Univ. Colorado); Michael Flasar (NASA/GSFC); Daniel Gautier (Observatoire de Paris); Tamas Gombosi (Univ. Michigan); Donald Gurnett (Univ. Iowa); Arvydas Kliore (JPL); Stamatios Krimigis (JHU/APL); Jonathan Lunine (Univ. Arizona); Tobias Owen (Univ. Hawaii); Carolyn Porco (Space Sci. Inst.); Francois Raulin (LISA - CNRS/Univ. Paris); Laurence Soderblom (USGS); Ralf Srama (MPI- K); Darrell Strobel (JHU); Hunter Waite (SwRI); David Young (SwRI); Nora Alonge (JPL); Nicolas Altobelli (ESA/ESAC); Ricardo Amils (Centro de Astrobiología); Nicolas Andre (Centre d'Etude Spatiale des Rayonnements, Toulouse, France); David Andrews (Univ. Leicester, UK); Sami Asmar (JPL); David Atkinson (Univ. Idaho); Sarah Badman (Univ. Leicester, UK); Kevin Baines (JPL); Georgios Bampasidis (Univ. Athens, Greece); Todd Barber (JPL); Patricia Beauchamp (JPL); Jared Bell (SwRI); Yves Benilan (LISA, Univ. P12, France); Jens Biele (DLR); Francoise Billebaud (Laboratoire d'Astrophysique de Bordeaux, Universite Bordeaux 1, CNRS, France); Gordon Bjoraker (NASA/GSFC); Donald Blankenship (Univ. Texas, Austin); Vincent Boudon (Institut Carnot de Bourgogne, CNRS); John Brasunas (NASA/GSFC); Shawn Brooks (JPL); Jay Brown (JPL); Emma Bunce (Univ. Leicester, UK); Bonnie Buratti (JPL); Joseph Burns (Cornell Univ.); Marcello Cacace (CNR Instit. for the Study of Nanostructured Materials); Patrick Canu (LPP/CNRS); Fabrizio Capaccioni (INAF IASF); Maria Capria (INAF IASF); Ronald Carlson (Catholic Univ. of America); Julie Castillo (JPL/Caltech); Thibault Cavalié (Max Planck Inst.
    [Show full text]