Web Query Classification and URL Ranking Based on Click Through Approach

Total Page:16

File Type:pdf, Size:1020Kb

Web Query Classification and URL Ranking Based on Click Through Approach S.PREETHA et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 10, October- 2013, pg. 138-144 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 2, Issue. 10, October 2013, pg.138 – 144 RESEARCH ARTICLE Web Query Classification and URL Ranking Based On Click through Approach S.PREETHA1, K.N Vimal Shankar2 PG Scholar1, Asst. Professor2 Department of Computer Science & Engineering1, 2 V.S.B. Engineering College, Karur, India1, 2 [email protected], [email protected] Abstract― In a web based application; different users may have different search goals when they submit it to a search engine. For a broad-topic and ambiguous query it is difficult. Here we propose a novel approach to infer user search goals by analyzing search engine query logs. This is typically shown in cases such as these: Different users have different backgrounds and interests. However, effective personalization cannot be achieved without accurate user profiles. We propose a framework that enables large-scale evaluation of personalized search. The goal of personalized IR (information retrieval) is to return search results that better match the user intent. First, we propose a framework to discover different user search goals for a query by clustering the proposed feedback sessions. Feedback sessions are getting constructed from user click-through logs and can efficiently reflect the information needs of users. Second, we propose an approach to generate pseudo-documents to better represent the feedback sessions for clustering. Most document-based methods focus on analyzing users’ clicking and browsing behaviors recorded at the users’ clickthrough data. In the Web search engines, clickthrough data are important implicit feedback mechanism from users. The bolded documents that have been clicked by the user have been ranked. Several personalized systems that employ clickthrough data to capture users’ interest have been proposed. Keywords― Clickthrough Data; Implicit Feedback Mechanism Ranking; Information Retrieval; Search Result Reorganization; Restructuring I. INTRODUCTION Web Mining is the Active and Popular Research Field Web Mining is a very hot research topic which combines two approaches of Data Mining and World Wide Web. The Web Mining research are belongs to Mining research are belongs to Several Communities Such as the Database, Artificial Intelligence and Information Retrieval. We Categorize Web Mining into three areas: Web Structure Mining, Web Content Mining, and Web Usage Mining. Web content mining focuses on the Retrival and © 2013, IJCSMC All Rights Reserved 138 S.PREETHA et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 10, October- 2013, pg. 138-144 Discovery of the useful information contents or data or documents from the Web. Web structure emphasizes to the discovery of how to model the underlying link structures of the Web. Web usage mining is relative independent, but not isolated, category which mainly describes the techniques that discover the user's usage pattern and try to predict the user's behaviors. Web Mining is one which helps in doing Business, Education and Company. Web is a large Dynamic, Diverse and Unstructured Data Repository field. Web a large, explosive, miscellaneous, dynamic and mostly unstructured data Repository which supplies vast amount of information .Existing search engines such as Google, Yahoo and Amazon often return a long list of search results, ranked by their relevancies to the specified query. Web users have to go through the list and examine the titles, tags and (short) snippets sequentially to identify their required results. This is a time consuming task since multiple sub-topics of the given query are mixed together. II. EXISTING SYSTEM In an web based application, queries are submitted to the Search Engines to represent information needs of the user yet some queries may not exactly represent users’ specific information needs since it is ambiguous and may cover a broad topic and different user may need to get information on different aspects when they submit the same query. For example Fig 1 shows the framework of our approach .when the query “The Sun” is submitted to the search engine ,some user are in need of Indian Newspaper, some are in need of natural language about Sun. hence it is necessary to capture the goals of different users in the case of Information Retrieval. the main advantage of inference and analysis of user search goals is as follows First, we can restructure the web search results according to the search results with the same search goals hence users with different search goals can easily find what they need. Second, user search goals represented by some keywords can be utilized in query recommendation; it helps the users to form the queries more precisely. Thrid, the distributions of user search goals can be useful in the application such as reranking web search results that contain different user search goals. It can be get summarized in to three classes: 1. Query Classification, 2. Search Result Re organization, and 3. Session boundary Detection. In the existing system all the feedback sessions of a query are first extracted from user click-through logs and mapped to pseudo-documents.. Since we do not know the accurate number of user search goals in advance, So several different values are tried and the optimal value will be determined by the feedback from the bottom part. In the bottom part, the original search results are restructured based on the user search goals inferred from the upper part. Then, evaluate the performance of restructuring search results by this evaluation criterion Classified Average Precision CAP. And the evaluation result will be used as the feedback to select the optimal number of user search goals in the upper part. Fig 1.Example of different user search goals and their distributions for the query “THE SUN” © 2013, IJCSMC All Rights Reserved 139 S.PREETHA et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 10, October- 2013, pg. 138-144 III. PROPOSED SYSTEM The existing feedback session consists of both clicked and un-clicked URLs and ends with the last URL that was clicked in a single session. It is used to find what the user need on that time based on this clicked data existing feedback consists. Most document-based methods focus on analyzing users’ clicking and browsing behaviors recorded in the users’ clickthrough data. On Web search engines, click through data are important implicit feedback mechanism from users. An example for the clickthrough data for the query “apple,” which contains a list of ranked search results presented to the user, with the identification on the results that the user has clicked on[2]. It rearranges the result both based on user interest and most clicked URL links. The user interest is not considers by the single session or last search session. In proposed system create a user profile and monitor users search session any time and also from anywhere. The advantages of our proposed system was we can change the interest of the User dynamically, User interest based search result will be get focused first, URL ranking in takes place, Search history will be worldwide Process. IV. FRAMEWORK OF OUR APPROACH The framework is getting divided into two parts: 1) In the first part, all the feedback session get extracted from the user Clickthrough logs and get mapped to the peudo documents. Clustering has been done by means of Keywords. Since we does not know the exact number of User search goals in advance several different values are been tried and then the optimal value will be get determined from the bottom part. 2.)In the second part, Original Search Results are get Restructured based on the User Search goals inferred from the upper part Shown in the fig 2.fig 2 shows the URL that has been get clicked so far or get just scanned from top to bottom will be inside the rectangular box and which has been outside the box has not yet viewed yet(other links) Fig 2 Example of Click through Data And its sequence count © 2013, IJCSMC All Rights Reserved 140 S.PREETHA et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 10, October- 2013, pg. 138-144 V. SYSTEM DESIGN The main aim of our Proposed system is one which creates the User Profile for each individual and it has been get authenticated by the client. The Interest of the user get registered in the database, since user interest will be get changed dynamically[5]. Based on that database will be get updated frequently. First the user enter the keyword if it is already in the database will be get checked by the server .Based on that it will be get displayed by the client Restructuring is get performed and for each user interest ranking will also be get done. Based on the Restructuring results it is one Ranking is get performed .Ranking is done on the User interest .Hence the very system has been get implemented. It is get briefly explained in the diagram shown in the Fig 3.It shows the working principle of the System based on the keyword given by the user. and check the database and update the interest. Fig 3 Architectural design of the System VI. IMPLEMENTATION A. Websearch Engine Creation User interface design is a design of computers, machines, mobile communication devices and many websites which focus on the User’s Experience and relations. The goal of the user interface design is to make the user interaction as simple and more efficient. The main aim is to fulfill the user search goals it is called as User Centered Design.
Recommended publications
  • Classifying User Search Intents for Query Auto-Completion
    Classifying User Search Intents for Query Auto-Completion Jyun-Yu Jiang Pu-Jen Cheng Department of Computer Science Department of Computer Science University of California, Los Angeles National Taiwan University California 90095, USA Taipei 10617, Taiwan [email protected] [email protected] ABSTRACT completion is to accurately predict the user's intended query The function of query auto-completion1 in modern search with only few keystrokes (or even without any keystroke), engines is to help users formulate queries fast and precisely. thereby helping the user formulate a satisfactory query with Conventional context-aware methods primarily rank candi- less effort and less time. For instance, users can avoid mis- date queries2 according to term- and query- relationships to spelling and ambiguous queries with query completion ser- the context. However, most sessions are extremely short. vices. Hence, how to capture user's search intents for pre- How to capture search intents with such relationships be- cisely predicting the query one is typing is very important. The context information, such as previous queries and comes difficult when the context generally contains only few 3 queries. In this paper, we investigate the feasibility of dis- click-through data in the same session , is usually utilized covering search intents within short context for query auto- to capture user's search intents. It also has been exten- completion. The class distribution of the search session (i.e., sively studied in both query completion [1, 21, 35] and sug- gestion [18, 25, 37]. Previous work primarily focused on cal- issued queries and click behavior) is derived as search in- 2 tents.
    [Show full text]
  • Automatic Web Query Classification Using Labeled and Unlabeled Training Data Steven M
    Automatic Web Query Classification Using Labeled and Unlabeled Training Data Steven M. Beitzel, Eric C. Jensen, David D. Lewis, Abdur Chowdhury, Ophir Frieder, David Grossman Aleksandr Kolcz Information Retrieval Laboratory America Online, Inc. Illinois Institute of Technology [email protected] {steve,ej,ophir,dagr}@ir.iit.edu {cabdur,arkolcz}@aol.com ABSTRACT We examine three methods for classifying general web queries: Accurate topical categorization of user queries allows for exact match against a large set of manually classified queries, a increased effectiveness, efficiency, and revenue potential in weighted automatic classifier trained using supervised learning, general-purpose web search systems. Such categorization and a rule-based automatic classifier produced by mining becomes critical if the system is to return results not just from a selectional preferences from hundreds of millions of unlabeled general web collection but from topic-specific databases as well. queries. The key contribution of this work is the development Maintaining sufficient categorization recall is very difficult as of a query classification framework that leverages the strengths web queries are typically short, yielding few features per query. of all three individual approaches to achieve the most effective We examine three approaches to topical categorization of classification possible. Our combined approach outperforms general web queries: matching against a list of manually labeled each individual method, particularly improves recall, and allows queries, supervised learning of classifiers, and mining of us to effectively classify a much larger proportion of an selectional preference rules from large unlabeled query logs. operational web query stream. Each approach has its advantages in tackling the web query classification recall problem, and combining the three 2.
    [Show full text]
  • Semantic Matching in Search
    Foundations and Trends⃝R in Information Retrieval Vol. 7, No. 5 (2013) 343–469 ⃝c 2014 H. Li and J. Xu DOI: 10.1561/1500000035 Semantic Matching in Search Hang Li Huawei Technologies, Hong Kong [email protected] Jun Xu Huawei Technologies, Hong Kong [email protected] Contents 1 Introduction 3 1.1 Query Document Mismatch ................. 3 1.2 Semantic Matching in Search ................ 5 1.3 Matching and Ranking ................... 9 1.4 Semantic Matching in Other Tasks ............. 10 1.5 Machine Learning for Semantic Matching in Search .... 11 1.6 About This Survey ...................... 14 2 Semantic Matching in Search 16 2.1 Mathematical View ..................... 16 2.2 System View ......................... 19 3 Matching by Query Reformulation 23 3.1 Query Reformulation .................... 24 3.2 Methods of Query Reformulation .............. 25 3.3 Methods of Similar Query Mining .............. 32 3.4 Methods of Search Result Blending ............. 38 3.5 Methods of Query Expansion ................ 41 3.6 Experimental Results .................... 44 4 Matching with Term Dependency Model 45 4.1 Term Dependency ...................... 45 ii iii 4.2 Methods of Matching with Term Dependency ....... 47 4.3 Experimental Results .................... 53 5 Matching with Translation Model 54 5.1 Statistical Machine Translation ............... 54 5.2 Search as Translation .................... 56 5.3 Methods of Matching with Translation ........... 59 5.4 Experimental Results .................... 61 6 Matching with Topic Model 63 6.1 Topic Models ........................ 64 6.2 Methods of Matching with Topic Model .......... 70 6.3 Experimental Results .................... 74 7 Matching with Latent Space Model 75 7.1 General Framework of Matching .............. 76 7.2 Latent Space Models ...................
    [Show full text]
  • A New Algorithm for Inferring User Search Goals with Feedback Sessions
    International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 3 Issue 11, November 2014 A Survey on: A New Algorithm for Inferring User Search Goals with Feedback Sessions Swati S. Chiliveri, Pratiksha C.Dhande a few words to search engines. Because these queries are short Abstract— For a broad-topic and ambiguous query, different and ambiguous, how to interpret the queries in terms of a set users may have different search goals when they submit it to a of target categories has become a major research issue. search engine. The inference and analysis of user search goals can be very useful in improving search engine relevance and For example, when the query ―the sun‖ is submitted to a user experience. This paper provides search engine, some people want to locate the homepage of a an overview of the system architecture of proposed feedback United Kingdom newspaper, while some people want to session framework with their advantages. Also we have briefly discussed the literature survey on Automatic Identification of learn the natural knowledge of the sun. Therefore, it is User Goals in Web Search with their pros and cons. We have necessary and potential to capture different user search goals, presented working of various classification approaches such as user needs in information retrieval. We define user search SVM, Exact matching and Bridges etc. under the web query goals as the information on different aspects of a query that classification framework. Lastly, we have described the existing user groups want to obtain. Information need is a user’s web clustering engines such as MetaCrawler, Carrot 2, particular desire to obtain information to satisfy users need.
    [Show full text]
  • Most Valuable (Cited)
    Top 100 Most Valuable Patent Portfolios Based on 3 million patents issued from 1-1-2005 to 3-21-2017 Methodology: 1) Identify all US-based patents and their patent citations 2) Identify most cited patents (patent must be cited > 10x as 10x is the average) 3) Aggregate all of the "most cited patents" into their Assignees and sort Patents Total Average Rank Assignee Being Cited Citations Citations/Patent 1 International Business Machines Corporation 5902 163252 27.66 2 Microsoft Corporation 4688 142191 30.33 3 Ethicon Endo-Surgery, Inc. 715 97544 136.43 4 Western Digital Technologies, Inc. 972 71947 74.02 5 Intel Corporation 2273 66689 29.34 6 Hewlett-Packard Development Company, L.P. 1922 58888 30.64 7 Tyco Healthcare Group LP 498 56695 113.85 8 Samsung Electronics Co., Ltd. 2097 53863 25.69 9 Canon Kabushiki Kaisha 1950 52703 27.03 10 Cisco Technology, Inc. 1702 51491 30.25 11 Micron Technology, Inc. 1567 48443 30.91 12 Medtronic, Inc. 1049 42652 40.66 13 Sony Corporation 1454 37963 26.11 14 Semiconductor Energy Laboratory Co., Ltd. 1177 36719 31.20 15 Apple Inc. 1057 36234 34.28 16 Hitachi, Ltd. 1314 36126 27.49 17 Western Digital (Fremont), LLC 322 36007 111.82 18 Masimo Corporation 220 35402 160.92 19 IGT 746 35063 47.00 20 Nokia Corporation 1110 34107 30.73 21 Kabushiki Kaisha Toshiba 1346 33712 25.05 22 Sun Microsystems, Inc. 982 29744 30.29 23 Matsushita Electric Industrial Co., Ltd. 1092 29719 27.22 24 General Electric Company 1301 29432 22.62 25 Silverbrook Research PTY LTD 656 25941 39.54 26 Boston Scientific SciMed, Inc.
    [Show full text]
  • Improving Search Engines Via Classification
    Improving Search Engines via Classi¯cation Zheng Zhu May 2011 A Dissertation Submitted to Birkbeck College, University of London in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy Department of Computer Science & Information Systems Birkbeck College University of London Declaration This thesis is the result of my own work, except where explicitly acknowledge in the text. Zheng Zhu i Abstract In this dissertation, we study the problem of how search engines can be improved by making use of classi¯cation. Given a user query, traditional search engines output a list of results that are ranked according to their relevance to the query. However, the ranking is independent of the topic of the document. So the results of di®erent topics are not grouped together within the result output from a search engine. This can be problematic as the user must scroll though many irrelevant results until his/her desired information need is found. This might arise when the user is a novice or has super¯cial knowledge about the domain of interest, but more typically it is due to the query being short and ambiguous. One solution is to organise search results via categorization, in particular, the classi¯cation. We designed a target testing experiment on a controlled data set, which showed that classi¯cation-based search could improve the user's search experience in terms of the numbers of results the user would have to inspect before satisfying his/her query. In our investigation of classi¯cation to organise search results, we not only consider the classi¯cation of search results, but also query classi¯cation.
    [Show full text]
  • Building Bridges for Web Query Classification
    Building Bridges for Web Query Classification Dou Shen†, Jian-Tao Sun‡, Qiang Yang†, Zheng Chen‡ †Department of Computer Science and Engineering, Hong Kong University of Science and Technology {dshen,qyang}@cs.ust.hk ‡Microsoft Research Asia, Beijing, P.R.China {jtsun, zhengc}@microsoft.com ABSTRACT 1. INTRODUCTION Web query classification (QC) aims to classify Web users’ With exponentially increasing information becoming avail- queries, which are often short and ambiguous, into a set of able on the Internet, Web search has become an indispens- target categories. QC has many applications including page able tool for Web users to gain desired information. Typi- ranking in Web search, targeted advertisement in response cally, Web users submit a short Web query consisting of a to queries, and personalization. In this paper, we present a few words to search engines. Because these queries are short novel approach for QC that outperforms the winning solu- and ambiguous, how to interpret the queries in terms of a tion of the ACM KDDCUP 2005 competition, whose objec- set of target categories has become a major research issue. tive is to classify 800,000 real user queries. In our approach, In this paper, we call the problem of generating a ranked list we first build a bridging classifier on an intermediate tax- of target categories from user queries the query classification onomy in an offline mode. This classifier is then used in problem, or QC for short. an online mode to map user queries to the target categories The importance of QC is underscored by many services via the above intermediate taxonomy.
    [Show full text]
  • Query Classification Based on Textual Patterns Mining and Linguistic Features Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot
    Query Classification based on Textual Patterns Mining and Linguistic Features Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot To cite this version: Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot. Query Classification based on Textual Patterns Mining and Linguistic Features. 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2019), Apr 2019, La Rochelle, France. hal-02447749 HAL Id: hal-02447749 https://hal.archives-ouvertes.fr/hal-02447749 Submitted on 21 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Query Classification based on Textual Patterns Mining and Linguistic Features Mohamed ETTALEB1, Chiraz LATIRI2, and Patrice BELLOT2 1 University of Tunis El Manar, Faculty of Sciences of Tunis, LIPAH research Laboratory, Tunis ,Tunisia 2 Aix-Marseille University, CNRS, LIS UMR 7020, 13397, Marseille, France [email protected], [email protected], [email protected] Abstract. We argue that verbose natural language queries used for soft- ware retrieval contain many terms that follow specific discourse rules, yet hinder retrieval. Through verbose queries, users can express complex or highly specific information needs. However, it is difficult for search engine to deal with this type of queries.
    [Show full text]
  • Ricardo Baeza-Yates Berthier Ribeiro-Neto
    Modern Information Retrieval The Concepts and Technology behind Search Ricardo Baeza-Yates Berthier Ribeiro-Neto Second edition Addison-Wesley Harlow, England Reading, Massachusetts Menlo Park, California• New York Don Mills, Ontario Amsterdam• Bonn Sydney Singapore• Tokyo Madrid• San Juan• Milan •Mexico City• Seoul Taipei • • • • References [1] I. Aalbersberg. Incremental relevance feedback. In Proc of the Fifteenth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, pages 11–22, Denmark, 1992. [2] H. Abdi. Kendall rank correlation. In N. Salkind, editor, Encyclopedia of Measure- ment and Statistics, Thousand Oaks, CA, 2007. Sage. [3] H. Abdi. The Kendall rank correlation coefficient. Technical report, Univ. of Texas at Dallas, 2007. [4] K. Aberer, F. Klemm, M. Rajman, and J. Wu. An architecture for peer-to-peer information retrieval. In Workshop on Peer-to-Peer Information Retrieval,Sheffield, UK, July 2004. [5] S. Abiteboul. Querying semi-structured data. In F. N. Afrati and P. Kolaitis, editors, Int. Conf. on Database Theory (ICDT), number 1186 in LNCS, pages 1–18, Delphi, Greece, 1997. Springer-Verlag. [6] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance compu- tation. In Proceedings of the twelfth international conference on World Wide Web, pages 280–290, Budapest, Hungary, 2003. ACM Press. [7] M. Abolhassani and N. Fuhr. Applying the divergence from randomness approach for content-only search in xml documents. Lecture Notes in Computer Science, 2997:409– 420, 2004. [8] M. Abrams, editor. World Wide Web: Beyond the Basics. Prentice Hall, 1998. [9] M. Abrol, N. Latarche, U. Mahadevan, J. Mao, R. Mukherjee, P.
    [Show full text]
  • 104. Ontology Based Web Query Classification
    International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015 ISSN 2091-2730 Ontology-Based Web Query Classification Bharat Katariya Computer Engineering Guided By Prof. Mitula Pandya [M.E, C.E] Alpha college of Engineering & Technology, Khatraj, Gandhinagar – 382721 Abstract- Now a day’s use of internet becomes very popular. Everyone gets their need by searching on internet. User can access information easily by web searching tools like a search engine. (Google) According to one survey nearly 70% of the people use a Search Engine to access the information available on Web. If Query submitted by the user to the search engine is too short and ambiguous then it can create problem to getting right documents. Query classification is one technique of Data Mining in query should classify to the number of predefined categories. Query classification use ontology as a model to retrieve the document. Ontology is used in information retrieval system to retrieve more relevant information from a collection of unstructured information source. The main objective of this work is to use ontology concepts as categories. The concepts of ontology will be used as training set. Each document is ranking by the probability. The semantic relations will solve the problem of ambiguity. Web query classification is used to ranking the page(Search engine optimization). Key Words- Classification, Ontology, Web query, categories of query, Irrelevant link, Duplicate link I. Introduction Web query classification is a part of web mining. Web mining include data cleaning, data integration from multiple sources, warehousing the data, data cube construction, data selection, data mining, presentation of mining results, pattern and knowledge to be used to stored into knowledge base.
    [Show full text]
  • Web Search Query Privacy, an End-User Perspective
    Journal of Information Security, 2017, 8, 56-74 http://www.scirp.org/journal/jis ISSN Online: 2153-1242 ISSN Print: 2153-1234 Web Search Query Privacy, an End-User Perspective Kato Mivule Department of Computer Science, Norfolk State University, Norfolk, USA How to cite this paper: Mivule, K. (2017) Abstract Web Search Query Privacy, an End-User Perspective. Journal of Information Securi- While search engines have become vital tools for searching information on ty, 8, 56-74. the Internet, privacy issues remain a growing concern due to the technological http://dx.doi.org/10.4236/jis.2017.81005 abilities of search engines to retain user search logs. Although such capabili- Received: December 28, 2016 ties might provide enhanced personalized search results, the confidentiality of Accepted: January 14, 2017 user intent remains uncertain. Even with web search query obfuscation tech- Published: January 17, 2017 niques, another challenge remains, namely, reusing the same obfuscation me- thods is problematic, given that search engines have enormous computation Copyright © 2017 by author and Scientific Research Publishing Inc. and storage resources for query disambiguation. A number of web search This work is licensed under the Creative query privacy procedures involve the cooperation of the search engine, a non- Commons Attribution International trusted entity in such cases, making query obfuscation even more challenging. License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ In this study, we provide a review on how search engines work in regards to Open Access web search queries and user intent. Secondly, this study reviews material in a manner accessible to those outside computer science with the intent to intro- duce knowledge of web search engines to enable non-computer scientists to approach web search query privacy innovatively.
    [Show full text]
  • Automated Identification of Web Queries Using Search Type Patterns
    Automated Identification of Web Queries using Search Type Patterns Alaa Mohasseb1, Maged El-Sayed2 and Khaled Mahar1 1College of Computing & Information Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt 2Department of Information Systems & Computers, Alexandria University, Alexandria, Egypt Keywords: Information Retrieval, User Intent, Web Queries, Web Searching, Search Engines, Query Classification. Abstract: The process of searching and obtaining information relevant to the information needed have become increasingly challenging. A broad range of web queries classification techniques have been proposed to help in understanding the actual intent behind a web search. In this research, we are introducing a new solution to automatically identify and classify the user's queries intent by using Search Type Patterns. Our solution takes into consideration query structure along with query terms. Experiments show that our approach has a high level of accuracy in identifying different search types. 1 INTRODUCTION ambiguous and most of the queries might have more than one meaning, therefore using only the terms to The main goal of any information retrieval system is identify search intents is not enough, two queries to obtain information relevant to information needs. might have exactly the same set of terms but may Search engines can better help the user to find reflect two totally different intents, therefore his/her needs if they can understand the intent of the classifying web queries using the structure of the user. Identifying such intent remains very difficult; query in addition to terms and characteristics may one major task in identifying the intent of the search help in making the classification of queries more engine users is the classification of the query type.
    [Show full text]