Most Valuable (Cited)

Total Page:16

File Type:pdf, Size:1020Kb

Most Valuable (Cited) Top 100 Most Valuable Patent Portfolios Based on 3 million patents issued from 1-1-2005 to 3-21-2017 Methodology: 1) Identify all US-based patents and their patent citations 2) Identify most cited patents (patent must be cited > 10x as 10x is the average) 3) Aggregate all of the "most cited patents" into their Assignees and sort Patents Total Average Rank Assignee Being Cited Citations Citations/Patent 1 International Business Machines Corporation 5902 163252 27.66 2 Microsoft Corporation 4688 142191 30.33 3 Ethicon Endo-Surgery, Inc. 715 97544 136.43 4 Western Digital Technologies, Inc. 972 71947 74.02 5 Intel Corporation 2273 66689 29.34 6 Hewlett-Packard Development Company, L.P. 1922 58888 30.64 7 Tyco Healthcare Group LP 498 56695 113.85 8 Samsung Electronics Co., Ltd. 2097 53863 25.69 9 Canon Kabushiki Kaisha 1950 52703 27.03 10 Cisco Technology, Inc. 1702 51491 30.25 11 Micron Technology, Inc. 1567 48443 30.91 12 Medtronic, Inc. 1049 42652 40.66 13 Sony Corporation 1454 37963 26.11 14 Semiconductor Energy Laboratory Co., Ltd. 1177 36719 31.20 15 Apple Inc. 1057 36234 34.28 16 Hitachi, Ltd. 1314 36126 27.49 17 Western Digital (Fremont), LLC 322 36007 111.82 18 Masimo Corporation 220 35402 160.92 19 IGT 746 35063 47.00 20 Nokia Corporation 1110 34107 30.73 21 Kabushiki Kaisha Toshiba 1346 33712 25.05 22 Sun Microsystems, Inc. 982 29744 30.29 23 Matsushita Electric Industrial Co., Ltd. 1092 29719 27.22 24 General Electric Company 1301 29432 22.62 25 Silverbrook Research PTY LTD 656 25941 39.54 26 Boston Scientific SciMed, Inc. 623 24728 39.69 27 Fujitsu Limited 933 24492 26.25 28 Google Inc. 896 24343 27.17 29 Shell Oil Company 294 23126 78.66 30 Qualcomm Incorporated 800 22214 27.77 31 Broadcom Corporation 784 21980 28.04 32 3M Innovative Properties Company 790 21613 27.36 33 Nortel Networks Limited 656 21338 32.53 34 Cardiac Pacemakers, Inc. 594 21232 35.74 35 Halliburton Energy Services, Inc. 698 20799 29.80 36 Motorola, Inc. 617 20747 33.63 37 Koninklijke Philips Electronics N.V. 710 20707 29.16 38 Donnelly Corporation 244 19859 81.39 39 Texas Instruments Incorporated 703 19549 27.81 40 DexCom, Inc. 116 19155 165.13 41 Seiko Epson Corporation 841 18981 22.57 42 Medtronic Minimed, Inc. 186 18793 101.04 43 SanDisk Corporation 438 18488 42.21 44 LG Electronics Inc. 761 18387 24.16 45 Digimarc Corporation 334 17970 53.80 46 Eastman Kodak Company 568 17812 31.36 47 Applied Materials, Inc. 602 17746 29.48 48 EMC Corporation 637 17588 27.61 49 Ricoh Company, Ltd. 714 15842 22.19 50 Honeywell International Inc. 637 15681 24.62 51 The Regents of the University of California 540 15518 28.74 52 Lucent Technologies Inc. 478 15321 32.05 53 Xerox Corporation 577 14901 25.82 54 Oracle International Corporation 506 14631 28.92 55 Covidien LP 257 14211 55.30 56 The Boeing Company 612 13074 21.36 57 Warsaw Orthopedic, Inc. 316 12757 40.37 58 NEC Corporation 524 12661 24.16 59 Research in Motion Limited 424 12557 29.62 60 Sherwood Services AG 84 12424 147.90 61 ATT Corp. 364 12411 34.10 62 Massachusetts Institute of Technology 369 12361 33.50 63 Infineon Technologies AG 456 12355 27.09 64 CommVault Systems, Inc. 192 12235 63.72 65 Amazon Technologies, Inc. 395 11880 30.08 66 Schlumberger Technology Corporation 489 11865 24.26 67 Advanced Micro Devices, Inc. 394 11578 29.39 68 Sharp Kabushiki Kaisha 487 11564 23.75 69 Ford Global Technologies, LLC 529 11084 20.95 70 Yahoo! Inc. 310 10992 35.46 71 SciMed Life Systems, Inc. 242 10928 45.16 72 McAfee, Inc. 335 10760 32.12 73 Monsanto Technology LLC 201 10724 53.35 74 Olympus Corporation 325 10693 32.90 75 Freescale Semiconductor, Inc. 415 10490 25.28 76 Juniper Networks, Inc. 318 10330 32.48 77 ADC Telecommunications, Inc. 313 10292 32.88 78 E Ink Corporation 144 9999 69.44 79 Cree, Inc. 255 9820 38.51 80 Telefonaktiebolaget LM Ericsson (publ) 329 9787 29.75 81 Panasonic Corporation 395 9665 24.47 82 Siemens Aktiengesellschaft 429 9476 22.09 83 Renesas Technology Corp. 383 9360 24.44 84 Advanced Cardiovascular Systems, Inc. 247 9346 37.84 85 Pacesetter, Inc. 255 9344 36.64 86 Symantec Corporation 334 9107 27.27 87 Xilinx, Inc. 363 9079 25.01 88 The Procter Gamble Company 409 9076 22.19 89 Nike, Inc. 304 8794 28.93 90 SDGI Holdings, Inc. 108 8777 81.27 91 Symbol Technologies, Inc. 220 8740 39.73 92 Robert Bosch GmbH 377 8621 22.87 93 Western Digital (Fremont), Inc. 72 8581 119.18 94 Honda Motor Co., Ltd. 365 8566 23.47 95 Baker Hughes Incorporated 333 8552 25.68 96 Taiwan Semiconductor Manufacturing Company, Ltd. 317 8482 26.76 97 Sprint Communications Company L.P. 302 8405 27.83 98 General Motors Corporation 345 8338 24.17 99 Lifescan, Inc. 92 8333 90.58 100 Covidien AG 150 8258 55.05 International Business Machines Corporation Cited CitedPatent Title Count 7039676 Using video image analysis to automatically transmit gestures over a network in a chat or instant messaging session 352 6964023 System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input258 6962872 High density chip carrier with integrated passive devices 222 6934756 Conversational networking via transport, coding and control conversational protocols 215 6921982 FET channel having a strained lattice structure along multiple surfaces 205 6936840 Phase-change memory cell and method of fabricating the phase-change memory cell 203 6873982 Ordering of database search results based on user feedback 194 7137126 Conversational computing via conversational virtual machine 188 6943407 Low leakage heterojunction vertical transistors and high performance devices thereof 188 6931532 Selective data encryption using style sheet processing 185 6999854 Medical infusion pump capable of learning bolus time patterns and providing bolus alerts 182 6947556 Secure data storage and retrieval with key management and user authentication 182 6988241 Client side, web-based spreadsheet 173 6937868 Apparatus and method for managing a mobile phone answering mode and outgoing message based on a location of the mobile phone173 6875703 Method for forming quadruple density sidewall image transfer (SIT) structures 171 7093208 Method for tuning a digital design for synthesized random logic circuit macros in a continuous design space with optional insertion166 of multiple threshold voltage devices 7269612 Method, system, and program for a policy based storage manager 166 7519726 Methods, apparatus and computer programs for enhanced access to resources within a network 166 6984591 Precursor source mixtures 165 7249123 System and method for building social networks based on activity around shared virtual objects 165 7141853 Method and structure for buried circuits and devices 164 6952758 Method and system for providing consistent data modification information to clients in a storage system 164 6985939 Building distributed software services as aggregations of other services 164 6993741 Generating mask patterns for alternating phase-shift mask lithography 164 7177880 Method of creating and displaying relationship chains between users of a computerized network 163 6986061 Integrated system for network layer security and fine-grained identity-based access control 159 6983371 Super-distribution of protected digital content 159 6895547 Method and apparatus for low density parity check encoding of data 159 6973553 Method and apparatus for using extended disk sector formatting to assist in backup and hierarchical storage management 154 7188085 Method and system for delivering encrypted content with associated geographical-based advertisements 153 7103731 Method, system, and program for moving data among storage units 152 7246118 Method and system for automated collaboration using electronic book highlights and notations 151 7350183 Method for improving optical proximity correction 149 7528494 Accessible chip stack and process of manufacturing thereof 148 7308669 Use of redundant routes to increase the yield and reliability of a VLSI layout 147 6983351 System and method to guarantee overwrite of expired data in a virtual tape server 147 7103906 User controlled multi-device media-on-demand system 146 6995456 High-performance CMOS SOI devices on hybrid crystal-oriented substrates 146 7035865 Calendar-enhanced awareness for instant messaging systems and electronic status boards 144 6977194 Structure and method to improve channel mobility by gate electrode stress modification 144 7923337 Fin field effect transistor devices with self-aligned source and drain regions 143 6874084 Method and apparatus for establishing a secure communication connection between a java application and secure server 142 7313593 Method and apparatus for providing full duplex and multipoint IP audio streaming 142 7072849 Method for presenting advertising in an interactive service 142 7213005 Digital content distribution using web broadcasting services 141 7480880 Method, system, and program product for computing a yield gradient from statistical timing 141 7099936 Multi-tier service level agreement method and system 139 6848078 Comparison of hierarchical structures and merging of differences 138 7302651 Technology migration for integrated circuits with radical design restrictions 138 7228354 Method for improving performance in a computer storage system by regulating resource requests from clients 138 7484197 Minimum layout perturbation-based artwork legalization with grid constraints for hierarchical designs 137 7465973 Integrated circuit having gates and active regions forming a regular grating 137 7402442 Physically highly secure
Recommended publications
  • Web Query Classification and URL Ranking Based on Click Through Approach
    S.PREETHA et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 10, October- 2013, pg. 138-144 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 2, Issue. 10, October 2013, pg.138 – 144 RESEARCH ARTICLE Web Query Classification and URL Ranking Based On Click through Approach S.PREETHA1, K.N Vimal Shankar2 PG Scholar1, Asst. Professor2 Department of Computer Science & Engineering1, 2 V.S.B. Engineering College, Karur, India1, 2 [email protected], [email protected] Abstract― In a web based application; different users may have different search goals when they submit it to a search engine. For a broad-topic and ambiguous query it is difficult. Here we propose a novel approach to infer user search goals by analyzing search engine query logs. This is typically shown in cases such as these: Different users have different backgrounds and interests. However, effective personalization cannot be achieved without accurate user profiles. We propose a framework that enables large-scale evaluation of personalized search. The goal of personalized IR (information retrieval) is to return search results that better match the user intent. First, we propose a framework to discover different user search goals for a query by clustering the proposed feedback sessions. Feedback sessions are getting constructed from user click-through logs and can efficiently reflect the information needs of users. Second, we propose an approach to generate pseudo-documents to better represent the feedback sessions for clustering.
    [Show full text]
  • Classifying User Search Intents for Query Auto-Completion
    Classifying User Search Intents for Query Auto-Completion Jyun-Yu Jiang Pu-Jen Cheng Department of Computer Science Department of Computer Science University of California, Los Angeles National Taiwan University California 90095, USA Taipei 10617, Taiwan [email protected] [email protected] ABSTRACT completion is to accurately predict the user's intended query The function of query auto-completion1 in modern search with only few keystrokes (or even without any keystroke), engines is to help users formulate queries fast and precisely. thereby helping the user formulate a satisfactory query with Conventional context-aware methods primarily rank candi- less effort and less time. For instance, users can avoid mis- date queries2 according to term- and query- relationships to spelling and ambiguous queries with query completion ser- the context. However, most sessions are extremely short. vices. Hence, how to capture user's search intents for pre- How to capture search intents with such relationships be- cisely predicting the query one is typing is very important. The context information, such as previous queries and comes difficult when the context generally contains only few 3 queries. In this paper, we investigate the feasibility of dis- click-through data in the same session , is usually utilized covering search intents within short context for query auto- to capture user's search intents. It also has been exten- completion. The class distribution of the search session (i.e., sively studied in both query completion [1, 21, 35] and sug- gestion [18, 25, 37]. Previous work primarily focused on cal- issued queries and click behavior) is derived as search in- 2 tents.
    [Show full text]
  • Automatic Web Query Classification Using Labeled and Unlabeled Training Data Steven M
    Automatic Web Query Classification Using Labeled and Unlabeled Training Data Steven M. Beitzel, Eric C. Jensen, David D. Lewis, Abdur Chowdhury, Ophir Frieder, David Grossman Aleksandr Kolcz Information Retrieval Laboratory America Online, Inc. Illinois Institute of Technology [email protected] {steve,ej,ophir,dagr}@ir.iit.edu {cabdur,arkolcz}@aol.com ABSTRACT We examine three methods for classifying general web queries: Accurate topical categorization of user queries allows for exact match against a large set of manually classified queries, a increased effectiveness, efficiency, and revenue potential in weighted automatic classifier trained using supervised learning, general-purpose web search systems. Such categorization and a rule-based automatic classifier produced by mining becomes critical if the system is to return results not just from a selectional preferences from hundreds of millions of unlabeled general web collection but from topic-specific databases as well. queries. The key contribution of this work is the development Maintaining sufficient categorization recall is very difficult as of a query classification framework that leverages the strengths web queries are typically short, yielding few features per query. of all three individual approaches to achieve the most effective We examine three approaches to topical categorization of classification possible. Our combined approach outperforms general web queries: matching against a list of manually labeled each individual method, particularly improves recall, and allows queries, supervised learning of classifiers, and mining of us to effectively classify a much larger proportion of an selectional preference rules from large unlabeled query logs. operational web query stream. Each approach has its advantages in tackling the web query classification recall problem, and combining the three 2.
    [Show full text]
  • Semantic Matching in Search
    Foundations and Trends⃝R in Information Retrieval Vol. 7, No. 5 (2013) 343–469 ⃝c 2014 H. Li and J. Xu DOI: 10.1561/1500000035 Semantic Matching in Search Hang Li Huawei Technologies, Hong Kong [email protected] Jun Xu Huawei Technologies, Hong Kong [email protected] Contents 1 Introduction 3 1.1 Query Document Mismatch ................. 3 1.2 Semantic Matching in Search ................ 5 1.3 Matching and Ranking ................... 9 1.4 Semantic Matching in Other Tasks ............. 10 1.5 Machine Learning for Semantic Matching in Search .... 11 1.6 About This Survey ...................... 14 2 Semantic Matching in Search 16 2.1 Mathematical View ..................... 16 2.2 System View ......................... 19 3 Matching by Query Reformulation 23 3.1 Query Reformulation .................... 24 3.2 Methods of Query Reformulation .............. 25 3.3 Methods of Similar Query Mining .............. 32 3.4 Methods of Search Result Blending ............. 38 3.5 Methods of Query Expansion ................ 41 3.6 Experimental Results .................... 44 4 Matching with Term Dependency Model 45 4.1 Term Dependency ...................... 45 ii iii 4.2 Methods of Matching with Term Dependency ....... 47 4.3 Experimental Results .................... 53 5 Matching with Translation Model 54 5.1 Statistical Machine Translation ............... 54 5.2 Search as Translation .................... 56 5.3 Methods of Matching with Translation ........... 59 5.4 Experimental Results .................... 61 6 Matching with Topic Model 63 6.1 Topic Models ........................ 64 6.2 Methods of Matching with Topic Model .......... 70 6.3 Experimental Results .................... 74 7 Matching with Latent Space Model 75 7.1 General Framework of Matching .............. 76 7.2 Latent Space Models ...................
    [Show full text]
  • A New Algorithm for Inferring User Search Goals with Feedback Sessions
    International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 3 Issue 11, November 2014 A Survey on: A New Algorithm for Inferring User Search Goals with Feedback Sessions Swati S. Chiliveri, Pratiksha C.Dhande a few words to search engines. Because these queries are short Abstract— For a broad-topic and ambiguous query, different and ambiguous, how to interpret the queries in terms of a set users may have different search goals when they submit it to a of target categories has become a major research issue. search engine. The inference and analysis of user search goals can be very useful in improving search engine relevance and For example, when the query ―the sun‖ is submitted to a user experience. This paper provides search engine, some people want to locate the homepage of a an overview of the system architecture of proposed feedback United Kingdom newspaper, while some people want to session framework with their advantages. Also we have briefly discussed the literature survey on Automatic Identification of learn the natural knowledge of the sun. Therefore, it is User Goals in Web Search with their pros and cons. We have necessary and potential to capture different user search goals, presented working of various classification approaches such as user needs in information retrieval. We define user search SVM, Exact matching and Bridges etc. under the web query goals as the information on different aspects of a query that classification framework. Lastly, we have described the existing user groups want to obtain. Information need is a user’s web clustering engines such as MetaCrawler, Carrot 2, particular desire to obtain information to satisfy users need.
    [Show full text]
  • Improving Search Engines Via Classification
    Improving Search Engines via Classi¯cation Zheng Zhu May 2011 A Dissertation Submitted to Birkbeck College, University of London in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy Department of Computer Science & Information Systems Birkbeck College University of London Declaration This thesis is the result of my own work, except where explicitly acknowledge in the text. Zheng Zhu i Abstract In this dissertation, we study the problem of how search engines can be improved by making use of classi¯cation. Given a user query, traditional search engines output a list of results that are ranked according to their relevance to the query. However, the ranking is independent of the topic of the document. So the results of di®erent topics are not grouped together within the result output from a search engine. This can be problematic as the user must scroll though many irrelevant results until his/her desired information need is found. This might arise when the user is a novice or has super¯cial knowledge about the domain of interest, but more typically it is due to the query being short and ambiguous. One solution is to organise search results via categorization, in particular, the classi¯cation. We designed a target testing experiment on a controlled data set, which showed that classi¯cation-based search could improve the user's search experience in terms of the numbers of results the user would have to inspect before satisfying his/her query. In our investigation of classi¯cation to organise search results, we not only consider the classi¯cation of search results, but also query classi¯cation.
    [Show full text]
  • Building Bridges for Web Query Classification
    Building Bridges for Web Query Classification Dou Shen†, Jian-Tao Sun‡, Qiang Yang†, Zheng Chen‡ †Department of Computer Science and Engineering, Hong Kong University of Science and Technology {dshen,qyang}@cs.ust.hk ‡Microsoft Research Asia, Beijing, P.R.China {jtsun, zhengc}@microsoft.com ABSTRACT 1. INTRODUCTION Web query classification (QC) aims to classify Web users’ With exponentially increasing information becoming avail- queries, which are often short and ambiguous, into a set of able on the Internet, Web search has become an indispens- target categories. QC has many applications including page able tool for Web users to gain desired information. Typi- ranking in Web search, targeted advertisement in response cally, Web users submit a short Web query consisting of a to queries, and personalization. In this paper, we present a few words to search engines. Because these queries are short novel approach for QC that outperforms the winning solu- and ambiguous, how to interpret the queries in terms of a tion of the ACM KDDCUP 2005 competition, whose objec- set of target categories has become a major research issue. tive is to classify 800,000 real user queries. In our approach, In this paper, we call the problem of generating a ranked list we first build a bridging classifier on an intermediate tax- of target categories from user queries the query classification onomy in an offline mode. This classifier is then used in problem, or QC for short. an online mode to map user queries to the target categories The importance of QC is underscored by many services via the above intermediate taxonomy.
    [Show full text]
  • Query Classification Based on Textual Patterns Mining and Linguistic Features Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot
    Query Classification based on Textual Patterns Mining and Linguistic Features Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot To cite this version: Mohamed Ettaleb, Chiraz Latiri, Patrice Bellot. Query Classification based on Textual Patterns Mining and Linguistic Features. 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2019), Apr 2019, La Rochelle, France. hal-02447749 HAL Id: hal-02447749 https://hal.archives-ouvertes.fr/hal-02447749 Submitted on 21 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Query Classification based on Textual Patterns Mining and Linguistic Features Mohamed ETTALEB1, Chiraz LATIRI2, and Patrice BELLOT2 1 University of Tunis El Manar, Faculty of Sciences of Tunis, LIPAH research Laboratory, Tunis ,Tunisia 2 Aix-Marseille University, CNRS, LIS UMR 7020, 13397, Marseille, France [email protected], [email protected], [email protected] Abstract. We argue that verbose natural language queries used for soft- ware retrieval contain many terms that follow specific discourse rules, yet hinder retrieval. Through verbose queries, users can express complex or highly specific information needs. However, it is difficult for search engine to deal with this type of queries.
    [Show full text]
  • Ricardo Baeza-Yates Berthier Ribeiro-Neto
    Modern Information Retrieval The Concepts and Technology behind Search Ricardo Baeza-Yates Berthier Ribeiro-Neto Second edition Addison-Wesley Harlow, England Reading, Massachusetts Menlo Park, California• New York Don Mills, Ontario Amsterdam• Bonn Sydney Singapore• Tokyo Madrid• San Juan• Milan •Mexico City• Seoul Taipei • • • • References [1] I. Aalbersberg. Incremental relevance feedback. In Proc of the Fifteenth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, pages 11–22, Denmark, 1992. [2] H. Abdi. Kendall rank correlation. In N. Salkind, editor, Encyclopedia of Measure- ment and Statistics, Thousand Oaks, CA, 2007. Sage. [3] H. Abdi. The Kendall rank correlation coefficient. Technical report, Univ. of Texas at Dallas, 2007. [4] K. Aberer, F. Klemm, M. Rajman, and J. Wu. An architecture for peer-to-peer information retrieval. In Workshop on Peer-to-Peer Information Retrieval,Sheffield, UK, July 2004. [5] S. Abiteboul. Querying semi-structured data. In F. N. Afrati and P. Kolaitis, editors, Int. Conf. on Database Theory (ICDT), number 1186 in LNCS, pages 1–18, Delphi, Greece, 1997. Springer-Verlag. [6] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance compu- tation. In Proceedings of the twelfth international conference on World Wide Web, pages 280–290, Budapest, Hungary, 2003. ACM Press. [7] M. Abolhassani and N. Fuhr. Applying the divergence from randomness approach for content-only search in xml documents. Lecture Notes in Computer Science, 2997:409– 420, 2004. [8] M. Abrams, editor. World Wide Web: Beyond the Basics. Prentice Hall, 1998. [9] M. Abrol, N. Latarche, U. Mahadevan, J. Mao, R. Mukherjee, P.
    [Show full text]
  • 104. Ontology Based Web Query Classification
    International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015 ISSN 2091-2730 Ontology-Based Web Query Classification Bharat Katariya Computer Engineering Guided By Prof. Mitula Pandya [M.E, C.E] Alpha college of Engineering & Technology, Khatraj, Gandhinagar – 382721 Abstract- Now a day’s use of internet becomes very popular. Everyone gets their need by searching on internet. User can access information easily by web searching tools like a search engine. (Google) According to one survey nearly 70% of the people use a Search Engine to access the information available on Web. If Query submitted by the user to the search engine is too short and ambiguous then it can create problem to getting right documents. Query classification is one technique of Data Mining in query should classify to the number of predefined categories. Query classification use ontology as a model to retrieve the document. Ontology is used in information retrieval system to retrieve more relevant information from a collection of unstructured information source. The main objective of this work is to use ontology concepts as categories. The concepts of ontology will be used as training set. Each document is ranking by the probability. The semantic relations will solve the problem of ambiguity. Web query classification is used to ranking the page(Search engine optimization). Key Words- Classification, Ontology, Web query, categories of query, Irrelevant link, Duplicate link I. Introduction Web query classification is a part of web mining. Web mining include data cleaning, data integration from multiple sources, warehousing the data, data cube construction, data selection, data mining, presentation of mining results, pattern and knowledge to be used to stored into knowledge base.
    [Show full text]
  • Web Search Query Privacy, an End-User Perspective
    Journal of Information Security, 2017, 8, 56-74 http://www.scirp.org/journal/jis ISSN Online: 2153-1242 ISSN Print: 2153-1234 Web Search Query Privacy, an End-User Perspective Kato Mivule Department of Computer Science, Norfolk State University, Norfolk, USA How to cite this paper: Mivule, K. (2017) Abstract Web Search Query Privacy, an End-User Perspective. Journal of Information Securi- While search engines have become vital tools for searching information on ty, 8, 56-74. the Internet, privacy issues remain a growing concern due to the technological http://dx.doi.org/10.4236/jis.2017.81005 abilities of search engines to retain user search logs. Although such capabili- Received: December 28, 2016 ties might provide enhanced personalized search results, the confidentiality of Accepted: January 14, 2017 user intent remains uncertain. Even with web search query obfuscation tech- Published: January 17, 2017 niques, another challenge remains, namely, reusing the same obfuscation me- thods is problematic, given that search engines have enormous computation Copyright © 2017 by author and Scientific Research Publishing Inc. and storage resources for query disambiguation. A number of web search This work is licensed under the Creative query privacy procedures involve the cooperation of the search engine, a non- Commons Attribution International trusted entity in such cases, making query obfuscation even more challenging. License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ In this study, we provide a review on how search engines work in regards to Open Access web search queries and user intent. Secondly, this study reviews material in a manner accessible to those outside computer science with the intent to intro- duce knowledge of web search engines to enable non-computer scientists to approach web search query privacy innovatively.
    [Show full text]
  • Automated Identification of Web Queries Using Search Type Patterns
    Automated Identification of Web Queries using Search Type Patterns Alaa Mohasseb1, Maged El-Sayed2 and Khaled Mahar1 1College of Computing & Information Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt 2Department of Information Systems & Computers, Alexandria University, Alexandria, Egypt Keywords: Information Retrieval, User Intent, Web Queries, Web Searching, Search Engines, Query Classification. Abstract: The process of searching and obtaining information relevant to the information needed have become increasingly challenging. A broad range of web queries classification techniques have been proposed to help in understanding the actual intent behind a web search. In this research, we are introducing a new solution to automatically identify and classify the user's queries intent by using Search Type Patterns. Our solution takes into consideration query structure along with query terms. Experiments show that our approach has a high level of accuracy in identifying different search types. 1 INTRODUCTION ambiguous and most of the queries might have more than one meaning, therefore using only the terms to The main goal of any information retrieval system is identify search intents is not enough, two queries to obtain information relevant to information needs. might have exactly the same set of terms but may Search engines can better help the user to find reflect two totally different intents, therefore his/her needs if they can understand the intent of the classifying web queries using the structure of the user. Identifying such intent remains very difficult; query in addition to terms and characteristics may one major task in identifying the intent of the search help in making the classification of queries more engine users is the classification of the query type.
    [Show full text]