TRANSITION-METAL-CATALYZED HYDROACYLATION Vy M. Dong, Kevin G. M. Kou, and Diane N. Le Department of Chemistry, University of California, Irvine, California 92697-2025, United States Vy M. Dong:
[email protected] ACKNOWLEDGEMENTS Our work in this area has been supported by UC Irvine, the National Institutes of Health (GM105938), and NSERC. We also acknowledge Paul Feldman for his editorial assistance in compiling the chapter as well as Scott Denmark for the opportunity to contribute to Organic Reactions. INTRODUCTION Transition-metal catalysis has revolutionized the way natural products and medicinal targets are made. For example, asymmetric hydrogenation, olefin metathesis, and cross-coupling have evolved into indispensable tools for drug discovery. As a complement to these well-established strategies, the metal-catalyzed activation of C─H bonds is an increasingly valuable and attractive approach. In metal-catalyzed hydroacylation, an aldehyde C─H bond is oxidized to generate either a C─C bond or C─O bond, depending on the coupling partner used (e.g., alkene, alkyne, or carbonyl compound). This strategy represents an attractive, atom-economical approach for building both ketones and esters from aldehydes (Scheme 1). (1) To date, hydroacylation is most well-established for the preparation of five-membered rings, typically by rhodium catalysis. As the tether between the aldehyde and the unsaturated coupling partner becomes longer, decarbonylation becomes favored over hydroacylation. Similarly, the rate of decarbonylation is usually greater than the rate of hydroacylation in intermolecular reactions. The desired transformation is more favorable, however, when coodinating or directing groups are present on the substrate (Schemes 2 and 3).