International Union of Basic and Clinical Pharmacology. XCIV

Total Page:16

File Type:pdf, Size:1020Kb

International Union of Basic and Clinical Pharmacology. XCIV 1521-0081/67/2/338–367$25.00 http://dx.doi.org/10.1124/pr.114.009647 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:338–367, April 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors Jörg Hamann, Gabriela Aust, Demet Araç, Felix B. Engel, Caroline Formstone, Robert Fredriksson, Randy A. Hall, Breanne L. Harty, Christiane Kirchhoff, Barbara Knapp, Arunkumar Krishnan, Ines Liebscher, Hsi-Hsien Lin, David C. Martinelli, Kelly R. Monk, Miriam C. Peeters, Xianhua Piao, Simone Prömel, Torsten Schöneberg, Thue W. Schwartz, Kathleen Singer, Martin Stacey, Yuri A. Ushkaryov, Mario Vallon, Uwe Wolfrum, Mathew W. Wright, Lei Xu, Tobias Langenhan, and Helgi B. Schiöth Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Surgery, Research Laboratories (G.A), and Institute of Biochemistry (I.L., S.P., T.S.), Medical Faculty, University of Leipzig, Leipzig, Germany; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois (D.A.); Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.B.E.); MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom (C.F.); Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (R.F., A.K., H.B.S.); Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (R.A.H.); Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri Downloaded from (B.L.H., K.R.M.); Department for Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany (C.K.); Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University Mainz, Mainz, Germany (B.K., U.W.); Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (H.-H.L.); Department of Molecular and Cellular Physiology (D.C.M.) and Division of Hematology (M.V.), Stanford University School of Medicine, Stanford, California; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (M.C.P.); Department of Neuroscience and Pharmacology and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark (M.C.P., T.W.S.); Division of Newborn Medicine, at Open University Library on January 22, 2020 Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts (X.P., K.S.); Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom (M.S.); Medway School of Pharmacy, University of Kent, Chatham, United Kingdom (Y.A.U.); HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom (M.W.W.); Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York (L.X.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.) Abstract ...................................................................................339 I. Introduction . ..............................................................................339 II. Recommended Nomenclature. ............................................................340 III. Taxonomy and Evolutionary Origin . ......................................................340 IV. Receptor Terminology......................................................................343 V. Autoproteolytic Processing .................................................................343 VI. Extracellular Interaction Partners . ......................................................344 VII. Signal Transduction .......................................................................346 A. G Protein–Mediated Intracellular Signaling. ..........................................346 B. G Protein–Independent Intracellular Signaling .........................................347 C. Modes of Signaling . ..................................................................347 VIII. Expression. ..............................................................................349 IX. Physiology and Disease . ..................................................................349 A. Molecular and Cellular Functions ......................................................349 1. Cell Size, Shape Control, and Cytoskeleton. .........................................349 2. Planar Cell Polarity. ................................................................352 3. Cell Adhesion and Migration. ......................................................353 4. Cell Cycle, Cell Death, and Differentiation. ..........................................353 J.H., G.A., T.L., and H.B.S. contributed equally to this work. Address correspondence to: Dr. Jörg Hamann, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands. E-mail: [email protected]; or Dr. Helgi B. Schiöth, Unit of Functional Pharmacology, Department of Neuroscience, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden. E-mail: [email protected] NC-IUPHAR is supported in part by Wellcome Trust Grant 099156/Z/12/Z. dx.doi.org/10.1124/pr.114.009647. 338 Adhesion G Protein–Coupled Receptors 339 B. Organ Systems. ........................................................................354 1. Hematopoietic System and Immunity................................................354 2. Cardiovascular System. ............................................................354 3. Respiratory Tract. ..................................................................355 4. Gastrointestinal Tract. ............................................................355 5. Urinary System (Kidney, Urinary Bladder). .........................................356 6. Endocrine System and Metabolism. ................................................356 7. Reproductive Organs. ............................................................356 8. Skeletal Muscle and Bone. ..........................................................356 9. Skin (Including Hair, Nails, and Mammary Gland).. ...............................356 10. Nervous System and Behavior. ......................................................357 11. Sensory Organs. ..................................................................358 C. Clinical Aspects ........................................................................358 1. Developmental Defects. ............................................................358 2. Tumorigenesis.......................................................................359 X. Perspectives on Pharmacological Opportunities . ..........................................360 Acknowledgments. ........................................................................361 References . ..............................................................................361 Abstract——The Adhesion family forms a large ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 branch of the pharmacologically important super- (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), family of G protein–coupled receptors (GPCRs). As ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), Adhesion GPCRs increasingly receive attention from ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 a wide spectrum of biomedical fields, the Adhesion (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, GPCR Consortium, together with the International Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, Union of Basic and Clinical Pharmacology Committee HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), on Receptor Nomenclature and Drug Classification, ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 proposes a unified nomenclature for Adhesion GPCRs. (GPR128), ADGRL1(latrophilin-1,CIRL-1,CL1),ADGRL2 The new names have ADGR as common dominator (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, followed by a letter and a number to denote each CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 subfamily and subtype, respectively. The new names, (VLGR1, GPR98). This review covers all major with old and alternative names within parentheses, are: biologic aspects of Adhesion GPCRs, including ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 evolutionary origins, interaction partners, signaling, (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 expression, physiologic functions, and therapeutic (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), potential. I. Introduction is in contrast to the Secretin GPCRs, which are not au- tocatalytically processed and often mediate hormonal Gprotein–coupled receptors (GPCRs) consist of five main families in mammals, the largest being the responses. Different groups of researchers commonly studying Rhodopsin family, or class A, with about 284 members (plus about 380 olfactory receptors) in humans, followed the Adhesion GPCRs with epidermal growth factor by the Adhesion GPCR family with 33 members, and then (EGF) domains within their N termini started a series the Glutamate family (class C), Secretin family (class B), of workshops that was the foundation for the current and Frizzled family, with 22, 15, and 11 members, larger Adhesion GPCR Consortium (http://www. respectively (Civelli et al., 2013). Originally, it was adhesiongpcr.org/) and the biennial Adhesion GPCR suggested that the Adhesion GPCRs belong to class B Workshops (e.g.,
Recommended publications
  • GPR56 in Human Cytotoxic Lymphocytes
    UvA-DARE (Digital Academic Repository) Adhesion GPCRs CD97 and GPR56: From structural regulation to cellular function Hsiao, C.-C. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Hsiao, C-C. (2015). Adhesion GPCRs CD97 and GPR56: From structural regulation to cellular function. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 8 Discussion Discussion This thesis describes research done on the adhesion G protein-coupled receptors (adhesion GPCRs) CD97 and GPR56. Both receptors have been intensively studied in the past, which has resulted in knowledge about their cellular distribution, ligand specificity, signaling capacity, and (patho)physiological activities (see Introduction). This and the availability of a large set of research tools, including expression constructs, monoclonal antibodies, and (not studied here) genetically modified mice, make CD97 and GPR56 useful models for studying structure–function relationships in adhesion GPCRs.
    [Show full text]
  • Technical Note, Appendix: an Analysis of Blood Processing Methods to Prepare Samples for Genechip® Expression Profiling (Pdf, 1
    Appendix 1: Signature genes for different blood cell types. Blood Cell Type Source Probe Set Description Symbol Blood Cell Type Source Probe Set Description Symbol Fraction ID Fraction ID Mono- Lympho- GSK 203547_at CD4 antigen (p55) CD4 Whitney et al. 209813_x_at T cell receptor TRG nuclear cytes gamma locus cells Whitney et al. 209995_s_at T-cell leukemia/ TCL1A Whitney et al. 203104_at colony stimulating CSF1R lymphoma 1A factor 1 receptor, Whitney et al. 210164_at granzyme B GZMB formerly McDonough (granzyme 2, feline sarcoma viral cytotoxic T-lymphocyte- (v-fms) oncogene associated serine homolog esterase 1) Whitney et al. 203290_at major histocompatibility HLA-DQA1 Whitney et al. 210321_at similar to granzyme B CTLA1 complex, class II, (granzyme 2, cytotoxic DQ alpha 1 T-lymphocyte-associated Whitney et al. 203413_at NEL-like 2 (chicken) NELL2 serine esterase 1) Whitney et al. 203828_s_at natural killer cell NK4 (H. sapiens) transcript 4 Whitney et al. 212827_at immunoglobulin heavy IGHM Whitney et al. 203932_at major histocompatibility HLA-DMB constant mu complex, class II, Whitney et al. 212998_x_at major histocompatibility HLA-DQB1 DM beta complex, class II, Whitney et al. 204655_at chemokine (C-C motif) CCL5 DQ beta 1 ligand 5 Whitney et al. 212999_x_at major histocompatibility HLA-DQB Whitney et al. 204661_at CDW52 antigen CDW52 complex, class II, (CAMPATH-1 antigen) DQ beta 1 Whitney et al. 205049_s_at CD79A antigen CD79A Whitney et al. 213193_x_at T cell receptor beta locus TRB (immunoglobulin- Whitney et al. 213425_at Homo sapiens cDNA associated alpha) FLJ11441 fis, clone Whitney et al. 205291_at interleukin 2 receptor, IL2RB HEMBA1001323, beta mRNA sequence Whitney et al.
    [Show full text]
  • ADGRE2-NTF Is Regulated by Site- Specific N-Glycosylation
    www.nature.com/scientificreports OPEN Membrane-association of EMR2/ ADGRE2-NTF is regulated by site- specifc N-glycosylation Received: 19 December 2017 Yi-Shu Huang1,4, Nien-Yi Chiang1, Gin-Wen Chang1 & Hsi-Hsien Lin1,2,3 Accepted: 27 February 2018 The evolutionarily conserved adhesion G protein-coupled receptors (aGPCRs) play critical roles in Published: xx xx xxxx biological processes as diverse as brain development, cell polarity and innate immune functions. A defning feature of aGPCRs is the GPCR autoproteolysis inducing (GAIN) domain capable of self- catalytic cleavage, resulting in the generation of an extracellular N-terminal fragment (NTF) and a seven-transmembrane C-terminal fragment (CTF) involved in the cellular adhesion and signaling functions, respectively. Interestingly, two diferent NTF subtypes have previously been identifed, namely an NTF that couples non-covalently with the CTF and a membrane-associated NTF that tethers on cell surface independently. The two NTF subtypes are expected to regulate aGPCR signaling via distinct mechanisms however their molecular characteristics are largely unknown. Herein, the membrane-associated NTF of EMR2/ADGRE2 is investigated and found to be modifed by diferential N-glycosylation. The membrane association of EMR2-NTF occurs in post-ER compartments and site- specifc N-glycosylation in the GAIN domain is involved in modulating its membrane-association ability. Finally, a unique amphipathic α-helix in the GAIN domain is identifed as a putative membrane anchor of EMR2-NTF. These results provide novel insights into the complex interaction and activation mechanisms of aGPCRs. Characterized by a long extracellular domain (ECD) with cell-adhesion functions and a seven-transmembrane (7TM) domain with signaling functions, the adhesion G protein-coupled receptors (aGPCRs) have been impli- cated in diverse biological activities and human diseases1.
    [Show full text]
  • EMR3 (ADGRE3) Hamster Monoclonal Antibody [Clone ID: 3D7] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AM01316FC-N EMR3 (ADGRE3) Hamster Monoclonal Antibody [Clone ID: 3D7] Product data: Product Type: Primary Antibodies Clone Name: 3D7 Applications: FC Recommended Dilution: Flow cytometry ( Neat - 1/10): use 10 µl of the suggested working dilution to label 10e6 cells in 100 µl. Reactivity: Human Host: Hamster Isotype: IgG Clonality: Monoclonal Immunogen: ARHO-EMR3-CD97 (EGF1) transfectants. Spleen cells from immunised Armenian hamster were fused with cells of the mouse SP2/0 myeloma cell line. Specificity: This antibody recognises epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 (EMR3), which is a 56kD member of the EGF-7 transmembrane (TM7) family of adhesion receptors. Formulation: PBS, pH 7.4, containing 0.09% Sodium Azide Label: FITC State: Liquid purified IgG Label: Fluorescein Isothiocyanate Isomer I Concentration: lot specific Purification: Affinity chromatography on Protein G Conjugation: FITC Storage: Store the antibody undiluted at 2-8°C for one month or (in aliquots) at -20°C for longer. Avoid repeated freezing and thawing. This product is photosensitive and should be protected from light. Stability: Shelf life: one year from despatch. Database Link: Entrez Gene 84658 Human Q9BY15 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 EMR3 (ADGRE3) Hamster Monoclonal Antibody [Clone ID: 3D7] – AM01316FC-N Background: EMR3 is expressed at the cell surface as a heterodimer.
    [Show full text]
  • Synaptamide Activates the Adhesion GPCR GPR110 (ADGRF1) Through GAIN Domain Binding
    ARTICLE https://doi.org/10.1038/s42003-020-0831-6 OPEN Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding Bill X. Huang1, Xin Hu2, Heung-Sun Kwon1, Cheng Fu1, Ji-Won Lee1, Noel Southall2, Juan Marugan2 & ✉ Hee-Yong Kim1 1234567890():,; Adhesion G protein-coupled receptors (aGPCR) are characterized by a large extracellular region containing a conserved GPCR-autoproteolysis-inducing (GAIN) domain. Despite their relevance to several disease conditions, we do not understand the molecular mechanism by which aGPCRs are physiologically activated. GPR110 (ADGRF1) was recently deorphanized as the functional receptor of N-docosahexaenoylethanolamine (synaptamide), a potent synap- togenic metabolite of docosahexaenoic acid. Thus far, synaptamide is the first and only small- molecule endogenous ligand of an aGPCR. Here, we demonstrate the molecular basis of synaptamide-induced activation of GPR110 in living cells. Using in-cell chemical cross-linking/ mass spectrometry, computational modeling and mutagenesis-assisted functional assays, we discover that synaptamide specifically binds to the interface of GPR110 GAIN subdomains through interactions with residues Q511, N512 and Y513, causing an intracellular conforma- tional change near TM6 that triggers downstream signaling. This ligand-induced GAIN-tar- geted activation mechanism provides a framework for understanding the physiological function of aGPCRs and therapeutic targeting in the GAIN domain. 1 Laboratory of Molecular Signaling, National Institute on Alcohol Abuse
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Chapter 2 the EGF-TM7 Family
    UvA-DARE (Digital Academic Repository) CD97 and EMR2: receptors on the move Kwakkenbos, M.J. Publication date 2004 Link to publication Citation for published version (APA): Kwakkenbos, M. J. (2004). CD97 and EMR2: receptors on the move. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:08 Oct 2021 Chapter 2 The EGF-TM7 family: a postgenomic view Immunogenetics, 55: 655-666, 2004 Mark J. Kwakkenbos1, Else N. Kop1,2, Martin Stacey3, Mourad Matmati1, Siamon Gordon3, Hsi-Hsien Lin3 and Jörg Hamann1 laboratory for Experimental Immunology 2Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands 3Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K. Chapter 2 ABSTRACT With the human and mouse genome projects now completed, the receptor repertoire of mammalian cells has finally been elucidated.
    [Show full text]
  • The Heteromeric PC-1/PC-2 Polycystin Complex Is Activated by the PC-1 N-Terminus
    RESEARCH ARTICLE The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus Kotdaji Ha1, Mai Nobuhara1, Qinzhe Wang2, Rebecca V Walker3, Feng Qian3, Christoph Schartner1, Erhu Cao2, Markus Delling1* 1Department of Physiology, University of California, San Francisco, San Francisco, United States; 2Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States; 3Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, United States Abstract Mutations in the polycystin proteins, PC-1 and PC-2, result in autosomal dominant polycystic kidney disease (ADPKD) and ultimately renal failure. PC-1 and PC-2 enrich on primary cilia, where they are thought to form a heteromeric ion channel complex. However, a functional understanding of the putative PC-1/PC-2 polycystin complex is lacking due to technical hurdles in reliably measuring its activity. Here we successfully reconstitute the PC-1/PC-2 complex in the plasma membrane of mammalian cells and show that it functions as an outwardly rectifying channel. Using both reconstituted and ciliary polycystin channels, we further show that a soluble fragment generated from the N-terminal extracellular domain of PC-1 functions as an intrinsic agonist that is necessary and sufficient for channel activation. We thus propose that autoproteolytic cleavage of the N-terminus of PC-1, a hotspot for ADPKD mutations, produces a soluble ligand in vivo. These findings establish a mechanistic framework for understanding the role of PC-1/PC-2 heteromers in ADPKD and suggest new therapeutic strategies that would expand upon the limited symptomatic treatments currently available for this progressive, terminal disease.
    [Show full text]
  • Structural Basis for Adhesion G Protein-Coupled Receptor Gpr126 Function
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2020 Structural basis for adhesion G protein-coupled receptor Gpr126 function Katherine Leon University of Chicago Rebecca L. Cunningham Washington University School of Medicine in St. Louis Joshua A. Riback University of Chicago Ezra Feldman University of Chicago Jingxian Li University of Chicago See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Leon, Katherine; Cunningham, Rebecca L.; Riback, Joshua A.; Feldman, Ezra; Li, Jingxian; Sosnick, Tobin R.; Zhao, Minglei; Monk, Kelly R.; and Araç, Demet, ,"Structural basis for adhesion G protein-coupled receptor Gpr126 function." Nature Communications.,. (2020). https://digitalcommons.wustl.edu/open_access_pubs/8691 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Katherine Leon, Rebecca L. Cunningham, Joshua A. Riback, Ezra Feldman, Jingxian Li, Tobin R. Sosnick, Minglei Zhao, Kelly R. Monk, and Demet Araç This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/ open_access_pubs/8691 ARTICLE https://doi.org/10.1038/s41467-019-14040-1 OPEN Structural basis for adhesion G protein-coupled receptor Gpr126 function Katherine Leon1,2, Rebecca L. Cunningham3, Joshua A. Riback1,4, Ezra Feldman1, Jingxian Li1,2, Tobin R. Sosnick1,5, Minglei Zhao1, Kelly R. Monk3,6 & Demet Araç 1,2* Many drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key 1234567890():,; functions in diverse biological processes including neurodevelopment, embryogenesis, and tumorigenesis.
    [Show full text]
  • Chapter 4: Macrophages Do Not Express the Phagocytic Receptor
    UvA-DARE (Digital Academic Repository) Diversity of microglia Their contribution to multiple sclerosis lesion formation van der Poel, M. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): van der Poel, M. (2020). Diversity of microglia: Their contribution to multiple sclerosis lesion formation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Chapter 4 Macrophages do not express the phagocytic receptor BAI1/ADGRB1 Cheng-Chih Hsiao1, Marlijn van der Poel2, Tjakko J. van Ham3 and Jörg Hamann1,2 1 Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2 Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; 3 Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands Published in Frontiers in Immunology 10, 962 (2019) 69 The highly organized life of metazoa requires the ability to remove cells that lose their function during embryonic and postnatal development or as part of routine tissue homeostasis1,2.
    [Show full text]
  • Datasheet: MCA2476A647 Product Details
    Datasheet: MCA2476A647 Description: HAMSTER ANTI HUMAN EMR3:Alexa Fluor® 647 Specificity: EMR3 Format: ALEXA FLUOR® 647 Product Type: Monoclonal Antibody Clone: 3D7 Isotype: IgG Quantity: 100 TESTS/1ml Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry Neat - 1/10 Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls. Target Species Human Product Form Purified IgG conjugated to Alexa Fluor® 647 - liquid Max Ex/Em Fluorophore Excitation Max (nm) Emission Max (nm) Alexa Fluor®647 650 665 Preparation Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide Stabilisers 1% Bovine Serum Albumin Approx. Protein IgG concentration 0.05 mg/ml Concentrations Immunogen ARHO-EMR3-CD97 (EGF1) transfectants. External Database UniProt: Links Q9BY15 Related reagents Entrez Gene: Page 1 of 3 84658 EMR3 Related reagents Fusion Partners Spleen cells from immunised Armenian hamster were fused with cells of the mouse SP2/0 myeloma cell line. Specificity Hamster anti Human EMR3 antibody, clone 3D7 recognizes human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 (EMR3), a ~56 kDa member of the EGF-7 transmembrane (TM7) family of adhesion receptors.
    [Show full text]
  • Pooled Extracellular Receptor-Ligand Interaction Screening Using CRISPR Activation Zheng-Shan Chong1, Shuhei Ohnishi2, Kosuke Yusa2 and Gavin J
    Chong et al. Genome Biology (2018) 19:205 https://doi.org/10.1186/s13059-018-1581-3 METHOD Open Access Pooled extracellular receptor-ligand interaction screening using CRISPR activation Zheng-Shan Chong1, Shuhei Ohnishi2, Kosuke Yusa2 and Gavin J. Wright1* Abstract Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin- associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale. Keywords: Cell surface receptors, Cell signaling, CRISPR activation, Extracellular protein interactions, Flow cytometry, Genome-wide screening, G-protein-coupled receptor, Monoclonal antibodies Background captured in addressed arrays and tested for direct bind- Identifying cell surface receptors for ligands such as pro- ing with prey proteins that are oligomerized to increase teins, small molecules, or whole pathogens, is an import- local avidity and permit the detection of even very weak ant step towards understanding how intercellular interactions. While this approach has enabled the con- signaling events are initiated and discovering new drug struction of extracellular protein-protein interaction net- targets. Because the extracellular regions of receptors – are directly accessible to systemically delivered therapeu- works [4 6], creating comprehensive libraries containing tics, particularly monoclonal antibodies, these proteins thousands of different recombinant proteins is impracti- and their interactions are highly valued targets and cal for most laboratories.
    [Show full text]