The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles

Total Page:16

File Type:pdf, Size:1020Kb

The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles UvA-DARE (Digital Academic Repository) The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles Salah, H.; Lackner, M.; Houbraken, J.; Theelen, B.; Lass-Flörl, C.; Boekhout, T.; Almaslamani, M.; Taj-Aldeen, S.J. DOI 10.3389/fmicb.2019.01677 Publication date 2019 Document Version Final published version Published in Frontiers in Microbiology License CC BY Link to publication Citation for published version (APA): Salah, H., Lackner, M., Houbraken, J., Theelen, B., Lass-Flörl, C., Boekhout, T., Almaslamani, M., & Taj-Aldeen, S. J. (2019). The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles. Frontiers in Microbiology, 10, [1677]. https://doi.org/10.3389/fmicb.2019.01677 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 ORIGINAL RESEARCH published: 30 July 2019 doi: 10.3389/fmicb.2019.01677 The Emergence of Rare Clinical Aspergillus Species in Qatar: Molecular Characterization and Antifungal Susceptibility Profiles Husam Salah 1,2*, Michaela Lackner 3, Jos Houbraken 4, Bart Theelen 2, Cornelia Lass-Flörl 3, Teun Boekhout 2,5, Muna Almaslamani 6 and Saad J. Taj-Aldeen 1 1 Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar, 2 Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands, 3 Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria, 4 Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands, 5 Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Netherlands, 6 Department of Medicine, Hamad Medical Corporation, Doha, Qatar Aspergillus are ubiquitous mold species that infect immunocompetent and immunocompromised patients. The symptoms are diverse and range from allergic Edited by: Hector Mora Montes, reactions, bronchopulmonary infection, and bronchitis, to invasive aspergillosis. The University of Guanajuato, Mexico aim of this study was to characterize 70 Aspergillus isolates recovered from clinical Reviewed by: specimens of patients with various clinical conditions presented at Hamad general Hamid Badali, hospital in Doha, Qatar, by using molecular methods and to determine their in vitro Mazandaran University of Medical Sciences, Iran antifungal susceptibility patterns using the Clinical and Laboratory Standards Institute Orazio Romeo, (CLSI) M38-A2 reference method. Fourteen Aspergillus species were identified by University of Messina, Italy sequencing β-tubulin and calmodulin genes, including 10 rare and cryptic species *Correspondence: Husam Salah not commonly recovered from human clinical specimens. Aspergillus welwitschiae is [email protected] reported in this study for the first time in patients with fungal rhinosinusitis (n = 6) and one patient with a lower respiratory infection. Moreover, Aspergillus pseudonomius is Specialty section: This article was submitted to reported in a patient with fungal rhinosinusitis which is considered as the first report Fungi and Their Interactions, ever from clinical specimens. In addition, Aspergillus sublatus is reported for the first a section of the journal time in a patient with cystic fibrosis. In general, our Aspergillus strains exhibited low Frontiers in Microbiology MIC values for most of the antifungal drugs tested. One strain of Aspergillus fumigatus Received: 09 May 2019 Accepted: 08 July 2019 showed high MECs for echinocandins and low MICs for the rest of the drugs tested. Published: 30 July 2019 Another strain of A. fumigatus exhibited high MIC for itraconazole and categorized Citation: as non-wild type. These findings require further analysis of their molecular basis of Salah H, Lackner M, Houbraken J, resistance. In conclusion, reliable identification of Aspergillus species is achieved by Theelen B, Lass-Flörl C, Boekhout T, Almaslamani M and Taj-Aldeen SJ using molecular sequencing, especially for the emerging rare and cryptic species. (2019) The Emergence of Rare Clinical They are mostly indistinguishable by conventional methods and might exhibit variable Aspergillus Species in Qatar: Molecular Characterization and antifungal susceptibility profiles. Moreover, investigation of the antifungal susceptibility Antifungal Susceptibility Profiles. patterns is necessary for improved antifungal therapy against aspergillosis. Front. Microbiol. 10:1677. doi: 10.3389/fmicb.2019.01677 Keywords: aspergillosis, molecular identification, antifungal susceptibility, Qatar, Middle East Frontiers in Microbiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1677 Salah et al. Rare Clinical Aspergillus spp. in Qatar INTRODUCTION The aim of the current study was to characterize 70 Aspergillus species isolated from a variety of clinical specimens received Aspergillus species are common environmental fungi found at the microbiology laboratory of Hamad general hospital in soil and decaying vegetative materials. They can infect in Doha, Qatar, with emphasis on emerging rare species immunocompetent (Chaturvedi et al., 2017; Emiralioglu identified as human pathogens, and to determine their antifungal et al., 2017; Kumar et al., 2017; Saedi et al., 2017) and susceptibility patterns using the Clinical and Laboratory immunocompromised (Taccone et al., 2015) patients. Individuals Standards Institute (CLSI) M38-A2 reference method. with underlying diseases or immune deficiencies can develop a variety of symptoms ranging from allergies, bronchopulmonary infections, and bronchitis, to invasive aspergillosis (IA) (Ruping MATERIALS AND METHODS et al., 2008; Guinea et al., 2010; Sugui et al., 2014). IA is Patients and Specimens associated mainly with neutropenic patients suffering from Seventy Aspergillus species were recovered from clinical hematological malignancies (Gerson et al., 1984; Abers et al., specimens of 67 patients, including immunocompromised 2016). Other risk factors include hematopoietic stem cell patients (n = 17, 25.4%) and immunocompetent ones with transplant (HSCT) (Marr et al., 2002), solid organ transplant other underlying diseases (n = 50, 74.6%) (Table 1), presented (SOT) (Patterson et al., 2000), patients receiving prolonged at Hamad general hospital in Doha, Qatar, between August high doses of corticosteroids (Palmer et al., 1991; Lewis and 2003 and November 2014 with proven or probable infection or Kontoyiannis, 2009), human immunodeficiency virus (HIV) colonization by Aspergillus species. The patients represented 15 infection with advanced acquired immune-deficiency syndrome nationalities, including countries from Southeast Asia (n = 23, (AIDS) (Libanore et al., 2002) and chronic granulomatous 23.3%) and the Middle East (n = 42, 62.7%), South Africa (n = disease (CGD) (Beaute et al., 2011). IA is associated with a 1, 1.5%) and the United States (n = 1, 1.5%). The isolates were high mortality rate among immunocompromised patients recovered from various clinical specimens, including respiratory (Baddley et al., 2010; Kontoyiannis et al., 2010; Neofytos et al., samples (sputum, broncho-alveolar lavage (BAL) and bronchial 2013; Garcia-Vidal et al., 2015). During the last two decades, wash), nose and nasal sinuses, ear, wounds, pus/abscess, eye, species other than A. fumigatus, namely, Aspergillus flavus, nail, burn, pleural fluid and an unknown culture plate of clinical Aspergillus terreus, Aspergillus niger, and other cryptic and rare specimen received for identification from an external facility species have increasingly been isolated from clinical specimens (Table 1). (Lass-Florl et al., 2005; Krishnan et al., 2009; Alastruey-Izquierdo et al., 2012). This epidemiological shift is attributed to the increasing number of immunocompromised patients, advances Isolation and Identification in the detection and identification of pathogenic fungi, and the Aspergillus species were identified by macro and microscopy selective pressure caused by extensive use of broad-spectrum according to the laboratory standard operative protocol of antifungal drugs (Krishnan et al., 2009; Alastruey-Izquierdo the microbiology laboratory at Hamad general hospital in et al., 2012). Voriconazole is the first line therapy recommended Qatar. Specimens were cultured on Sabouraud dextrose agar for the management of IA (Patterson et al., 2016; Ullmann (SDA; Difco Laboratories, Detroit, MI) with and without et al., 2018). Other alternatives are liposomal amphotericin chloramphenicol. Culture plates were incubated at 26 and ◦ B and isavuconazole. In patients who exhibit refractory or 37 C and were observed
Recommended publications
  • Characterization of Aspergillus Flavus Soil and Corn Kernel Populations from Eight Mississippi River States Jorge A
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 11-13-2017 Characterization of Aspergillus Flavus Soil and Corn Kernel Populations From Eight Mississippi River States Jorge A. Reyes Pineda Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons Recommended Citation Reyes Pineda, Jorge A., "Characterization of Aspergillus Flavus Soil and Corn Kernel Populations From Eight Mississippi River States" (2017). LSU Master's Theses. 4350. https://digitalcommons.lsu.edu/gradschool_theses/4350 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CHARACTERIZATION OF ASPERGILLUS FLAVUS SOIL AND CORN KERNEL POPULATIONS FROM EIGHT MISSISSIPPI RIVER STATES A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Plant Pathology and Crop Physiology by Jorge A. Reyes Pineda B.S., Universidad Nacional de Agricultura-Honduras 2011 December 2017 ACKNOWLEDGEMENTS I first thank God who gave me the strength and perseverance to complete the requirements for this degree, and second, I thank my family. Without their unconditional support and encouragement, I would have never been able to achieve this endeavor. I would like to thank my advisory committee, Drs.
    [Show full text]
  • Aspergillus Tubingensis Causes Leaf Spot of Cotton (Gossypium Hirsutum L.) in Pakistan
    Phyton, International Journal of Experimental Botany DOI: 10.32604/phyton.2020.08010 Article Aspergillus tubingensis Causes Leaf Spot of Cotton (Gossypium hirsutum L.) in Pakistan Maria Khizar1, Urooj Haroon1, Musrat Ali1, Samiah Arif2, Iftikhar Hussain Shah2, Hassan Javed Chaudhary1 and Muhammad Farooq Hussain Munis1,* 1Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan 2Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China *Corresponding Author: Muhammad Farooq Hussain Munis. Email: [email protected] Received: 20 July 2019; Accepted: 12 October 2019 Abstract: Cotton (Gossypium hirsutum L.) is a key fiber crop of great commercial importance. Numerous phytopathogens decimate crop production by causing various diseases. During July-August 2018, leaf spot symptoms were recurrently observed on cotton leaves in Rahim Yar Khan, Pakistan and adjacent areas. Infected leaf samples were collected and plated on potato dextrose agar (PDA) media. Causal agent of cotton leaf spot was isolated, characterized and identified as Aspergillus tubingensis based on morphological and microscopic observations. Conclusive identification of pathogen was done on the comparative molecular analysis of CaM and β-tubulin gene sequences. BLAST analysis of both sequenced genes showed 99% similarity with A. tubingensis. Koch’s postulates were followed to confirm the pathogenicity of the isolated fungus. Healthy plants were inoculated with fungus and similar disease symptoms were observed. Fungus was re-isolated and identified to be identical to the inoculated fungus. To our knowledge, this is the first report describing the involvement of A. tubingensis in causing leaf spot disease of cotton in Pakistan and around the world.
    [Show full text]
  • Patents on Endophytic Fungi Related to Secondary Metabolites and Biotransformation Applications
    Journal of Fungi Review Patents on Endophytic Fungi Related to Secondary Metabolites and Biotransformation Applications Daniel Torres-Mendoza 1,2 , Humberto E. Ortega 1,3 and Luis Cubilla-Rios 1,* 1 Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; [email protected] (D.T.-M.); [email protected] (H.E.O.) 2 Vicerrectoría de Investigación y Postgrado, University of Panama, Panama 0824, Panama 3 Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama * Correspondence: [email protected]; Tel.: +507-6676-5824 Received: 31 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: Endophytic fungi are an important group of microorganisms and one of the least studied. They enhance their host’s resistance against abiotic stress, disease, insects, pathogens and mammalian herbivores by producing secondary metabolites with a wide spectrum of biological activity. Therefore, they could be an alternative source of secondary metabolites for applications in medicine, pharmacy and agriculture. In this review, we analyzed patents related to the production of secondary metabolites and biotransformation processes through endophytic fungi and their fields of application. Weexamined 245 patents (224 related to secondary metabolite production and 21 for biotransformation). The most patented fungi in the development of these applications belong to the Aspergillus, Fusarium, Trichoderma, Penicillium, and Phomopsis genera and cover uses in the biomedicine, agriculture, food, and biotechnology industries. Keywords: endophytic fungi; patents; secondary metabolites; biotransformation; biological activity 1. Introduction The term endophyte refers to any organism (bacteria or fungi) that lives in the internal tissues of a host.
    [Show full text]
  • Identification of Fungi Storage Types by Sequencing Method
    Zh. T. Abdrassulova et al /J. Pharm. Sci. & Res. Vol. 10(3), 2018, 689-692 Identification of Fungi Storage Types by Sequencing Method Zh. T. Abdrassulova, A. M. Rakhmetova*, G. A. Tussupbekova#, Al-Farabi Kazakh national university, 050040, Republic of Kazakhstan, Almaty, al-Farabi Ave., 71 *Karaganda State University named after the academician E.A. Buketov #A;-Farabi Kazakh National University, 050040, Republic of Kazakhstan, Almaty, al0Farabi Ave, 71 E. M. Imanova, Kazakh State Women’s Teacher Training University, 050000, Republic of Kazakhstan, Almaty, Aiteke bi Str., 99 M. S. Agadieva, R. N. Bissalyyeva Aktobe regional governmental university named after K.Zhubanov, 030000, Republic of Kazakhstan, Аktobe, A. Moldagulova avenue, 34 Abstract With the use of classical identification methods, which imply the identification of fungi by cultural and morphological features, they may not be reliable. With the development of modern molecular methods, it became possible to quickly and accurately determine the species and race of the fungus. The purpose of this work was to study bioecology and refine the species composition of fungi of the genus Aspergillus, Penicillium on seeds of cereal crops. The article presents materials of scientific research on morphological and molecular genetic peculiarities of storage fungi, affecting seeds of grain crops. Particular attention is paid to the fungi that develop in the stored grain. The seeds of cereals (Triticum aestivum L., Avena sativa L., Hordeum vulgare L., Zea mays L., Oryza sativa L., Sorghum vulgare Pers., Panicum miliaceum L.) were collected from the granaries of five districts (Talgar, Iliysky, Karasai, Zhambul, Panfilov) of the Almaty region. The pathogens of diseases of fungal etiology were found from the genera Penicillium, Aspergillus influencing the safety, quality and safety of the grain.
    [Show full text]
  • Analysis and Optimisation of Plant Biomass Degrading Enzyme Production in Aspergillus
    Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus Helena Marie Culleton Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus Analyse en optimalisatie van de productie van planten biomassa afbrekende enzymen in Aspergillus (met een Nederlandse samenvatting) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 26 februari 2015 des middags te 12.45 uur door Helena Marie Culleton geboren op 3 april 1986 te Wexford, Ireland Promotor: Prof. Dr. ir. R.P. de Vries Co-promotor: Dr. V.A. McKie For my parents and family The Aspergillus niger image on the cover was kindly provided by; Dr. Nick Reid, Professor of Fungal Cell Biology, Director, Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, CTF Building, Grafton Street, Manchester M13 9NT. Printed by Snap ™ Printing, www.snap.ie The research described in this thesis was performed in; Megazyme International Ireland, Bray Business Park, Bray, Co. Wicklow, Ireland; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; and supported by Megazyme International Ireland, Bray Business Park, Bray, Co. Wicklow, Ireland. Contents Chapter 1 General Introduction 9 Chapter 2 Closely
    [Show full text]
  • Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
    Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result.
    [Show full text]
  • Challenges in Management of Aflatoxins and Ochratoxin a in Contaminated Raw Materials Esther García Cela
    Nom/Logotip de la Universitat on s’ha llegit la tesi Challenges in management of aflatoxins and ochratoxin A in contaminated raw materials Esther García Cela Dipòsit Legal: L.145-2015 http://hdl.handle.net/10803/285374 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996).
    [Show full text]
  • The Amazing Potential of Fungi in Human Life
    ARC Journal of Pharmaceutical Sciences (AJPS) Volume 5, Issue 3, 2019, PP 12-16 ISSN No.: 2455-1538 DOI: http://dx.doi.org/10.20431/2455-1538.0503003 www.arcjournals.org The Amazing Potential of Fungi in Human Life Waill A. Elkhateeb *, Ghoson M. Daba Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, Egypt. *Corresponding Author: Waill A. Elkhateeb, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, Egypt. Abstract: Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an unexploited resource with huge industrial potential. Fungi are an understudied, biotechnologically valuable group of organisms, due to the huge range of habitats that fungi inhabit, fungi represent great promise for their application in biotechnology and industry. This review demonstrate that fungal mycelium as a medium, the vegetative part can potentially be utilized in plastic biodegradation and growing alternative and sustainable materials. Innovative fungal mycelium-based biofoam demonstrate that this biofoam offers great potential for application as an alternative insulation material for building and infrastructure construction. Keywords: Degradation of plastic, plastic degrading fungi, bioremediation, grown materials, Ecovative, fungal mycelium-based biofoam 1. INTRODUCTION Plastic is a naturally refractory polymer, once it enters the environment, it will remain there for many years. Accumulation of plastic as wastes in the environment poses a serious problem and causes an ecological threat. [1]. The rapid development of chemical industry in the last century has led to the production of approximately 140 million tons of various polymers annually [2].
    [Show full text]
  • Isolation and Identification of Some Fruit Spoilage Fungi: Screening of Plant Cell Wall Degrading Enzymes
    African Journal of Microbiology Research Vol. 5(4), pp. 443-448, 18 February, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR10.896 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Isolation and identification of some fruit spoilage fungi: Screening of plant cell wall degrading enzymes Rashad R. Al-Hindi1, Ahmed R. Al-Najada1 and Saleh A. Mohamed2* 1Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia. 2Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia. Accepted 17 January, 2011. This study investigates the current spoilage fruit fungi and their plant cell wall degrading enzymes of various fresh postharvest fruits sold in Jeddah city and share in establishment of a fungal profile of fruits. Ten fruit spoilage fungi were isolated and identified as follows Fusarium oxysporum (banana and grape), Aspergillus japonicus (pokhara and apricot), Aspergillus oryzae (orange), Aspergillus awamori (lemon), Aspergillus phoenicis (tomato), Aspergillus tubingensis (peach), Aspergillus niger (apple), Aspergillus flavus (mango), Aspergillus foetidus (kiwi) and Rhizopus stolonifer (date). The plant cell wall degrading enzymes xylanase, polygalacturonase, cellulase and -amylase were screened in the cell-free broth of all tested fungi cultured on their fruit peels and potato dextrose broth (PDB) as media. Xylanase and polygalacturonase had the highest level contents as compared to the cellulase and - amylase. In conclusion, Aspergillus spp. are widespread and the fungal polygalacturonases and xylanses are the main enzymes responsible for the spoilage of fruits. Key words: Aspergillus, Fusarium, Rhizopus, fruits, xylanase, polygalacturonase. INTRODUCTION It has been known that fruits constitute commercially and consumer.
    [Show full text]
  • Safety of the Fungal Workhorses of Industrial Biotechnology: Update on the Mycotoxin and Secondary Metabolite Potential of Asper
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Mar 29, 2019 brought to you by CORE provided by Online Research Database In Technology Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei Frisvad, Jens Christian; Møller, Lars L. H.; Larsen, Thomas Ostenfeld; Kumar, Ravi; Arnau, Jose Published in: Applied Microbiology and Biotechnology Link to article, DOI: 10.1007/s00253-018-9354-1 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Frisvad, J. C., Møller, L. L. H., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 102(22), 9481-9515. DOI: 10.1007/s00253-018-9354-1 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • Advances in Food Mycology Advances in Experimental Medicine and Biology
    Advances in Food Mycology Advances in Experimental Medicine and Biology Editorial Board: NATHAN BACK, State University of New York at Buffalo IRUN R. COHEN, The Weizmann Institute of Science DAVID KRITCHEVSKY, Wistar Institute ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research RODOLFO PAOLETTI, University of Milan Recent Volumes in this Series Volume 563 UPDATES IN PATHOLOGY Edited by David C. Chhieng and Gene P. Siegal Volume 564 GLYCOBIOLOGY AND MEDICINE: PROCEEDINGS OF THE 7TH JENNER GLYCOBIOLOGY AND MEDICINE SYMPOSIUM Edited by John S. Axford Volume 565 SLIDING FILAMENT MECHANISM IN MUSCLE CONTRACTION: FIFTY YEARS OF RESEARCH Edited by Haruo Sugi Volume 566 OXYGEN TRANSPORT TO ISSUE XXVI Edited by Paul Okunieff, Jacqueline Williams, and Yuhchyau Chen Volume 567 THE GROWTH HORMONE-INSULIN-LIKE GROWTH FACTOR AXIS DURING DEVELOPMENT Edited by Isabel Varela-Nieto and Julie A. Chowen Volume 568 HOT TOPICS IN INFECTION AND IMMUNITY IN CHILDREN II Edited by Andrew J. Pollard and Adam Finn Volume 569 EARLY NUTRITION AND ITS LATER CONSEQUENCES: NEW OPPORTUNITIES Edited by Berthold Koletzko, Peter Dodds, Hans Akerbloom, and Margaret Ashwell Volume 570 GENOME INSTABILITY IN CANCER DEVELOPMENT Edited by Erich A. Nigg Volume 571 ADVANCES IN MYCOLOGY Edited by J.I. Pitts, A.D. Hocking, and U. Thrane A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher. Advances in Food Mycology Edited by A.D. Hocking Food Science Australia North Ryde, Australia J.I. Pitt Food Science Australia North Ryde, Australia R.A.
    [Show full text]