A Mini-Course on Topological Strings

Total Page:16

File Type:pdf, Size:1020Kb

A Mini-Course on Topological Strings UUITP-06/05 hep-th/0504147 A mini-course on topological strings Marcel Vonk Department of Theoretical Physics Uppsala University Box 803 SE-751 08 Uppsala Sweden [email protected] Abstract These are the lecture notes for a short course in topological string theory that I gave at Uppsala University in the fall of 2004. The notes are aimed at PhD students who have studied quantum field theory and general relativity, and who have some general knowledge of ordinary string theory. The main purpose of the course is to cover the basics: after a review of the necessary mathematical tools, a thorough discussion of the construction of the A- and B-model topological strings from twisted N = (2, 2) supersymmetric field arXiv:hep-th/0504147v1 18 Apr 2005 theories is given. The notes end with a brief discussion on some selected applications. April 2005 Contents 1 Introduction 2 1.1 Motivation.................................... 2 1.2 Backgroundassumed .............................. 3 1.3 Overview..................................... 4 1.4 Literature .................................... 5 1.5 Acknowledgements ............................... 6 2 Mathematical background 7 2.1 Topologicalspaces ............................... 7 2.2 Manifolds .................................... 9 2.3 Topologicalinvariants. ... 10 2.4 Homologyandcohomology. 12 2.4.1 Differentialforms ............................ 12 2.4.2 DeRhamcohomology ......................... 14 2.4.3 Homology ................................ 16 2.4.4 TheHodgestarandharmonicforms . 18 2.4.5 Dolbeaultcohomology . 19 2.4.6 Relations between Hodge numbers and Poincar´eduality....... 21 2.5 Vectorbundles ................................. 22 2.5.1 Definition ................................ 22 2.5.2 Examples ................................ 23 2.5.3 Connections............................... 28 2.5.4 Chernclasses .............................. 30 3 Topological field theories – generalities 31 3.1 Generaldefinition................................ 31 3.2 Chern-Simonstheory .............................. 32 3.3 Cohomologicalfieldtheories . ... 35 3.3.1 Descentequations............................ 38 3.3.2 Two-dimensional cohomological field theories . ....... 40 4 Calabi-Yau manifolds and their moduli spaces 45 4.1 Calabi-Yaumanifolds. 45 4.2 Modulispaces.................................. 48 4.2.1 TheK¨ahlermoduli ........................... 48 4.2.2 The complex structure moduli . 49 5 Twisting supersymmetric field theories 52 5.1 N = (2, 2) supersymmetry in two dimensions . 52 5.1.1 Superspace ............................... 53 5.1.2 R-symmetry............................... 58 1 5.2 Twisted N =2theories............................. 64 5.2.1 Virtualdimensions ........................... 66 5.2.2 TheA-model .............................. 68 5.2.3 TheB-model .............................. 75 6 Topological strings 78 6.1 Couplingtotopologicalgravity . .... 79 6.2 Nonlocaloperators ............................... 88 6.3 Theholomorphicanomaly . 90 7 Applications 94 7.1 N =2F-terms ................................. 95 7.1.1 Thelow-energytheory . .. .. 96 7.1.2 Highergenus .............................. 98 7.2 TheNS5-branepartitionfunction. .... 99 7.3 Geometrictransitions. 100 7.3.1 Conifolds ................................ 101 7.3.2 TopologicalD-branes . 103 7.3.3 General idea of open/closed dualities . .... 104 7.3.4 Thetransition.............................. 106 7.4 Topologicalstringsandmatrixmodels . ..... 107 7.4.1 Zero-dimensional matrix models . 107 7.4.2 Matrixquantummechanics . 109 7.5 N =1F-terms ................................. 110 7.6 Topologicalstringsandblackholes . ..... 113 7.6.1 Blackholesandmatrixmodels. 114 7.7 TopologicalM-theory? . 115 1 Introduction 1.1 Motivation When asked about the use of topological field theory and topological string theory, different string theorists may give very different answers. Some will point at the many interesting mathematical results that these theories have led to. Others will tell you that topological string theory is a very useful toy model to understand more about properties of ordinary string theory in a simplified setting. And finally, there will be those pointing at the many and often unexpected ways in which topological string theory can be applied to derive results in ordinary string theories and other related fields. Which opinion one prefers is of course a matter of taste, but it is a fact that all three of these reasons for studying topological strings have been a motivation for people to learn more about the subject in the past fifteen years or so. This has of course also resulted in a 2 lot of research, and as an inevitable consequence the subject has become quite large. For those that have been following the field for fifteen years, this is not so much of a problem, but new graduate students and other interested physicists and mathematicians can easily lose track in the vast amount of literature. When a subject reaches this stage in its development, automatically the first reviews and textbooks start to appear. This has also happened for topological field theory and topolog- ical string theory; below, I will list a number of good references. So what does the current text have to add to this? Hopefully: the basics. Many of the texts to be mentioned below are excellent introductions for the more advanced string theorists, but topological string theory could (and should) be accessible to a much larger audience, including beginning graduate students who may not even have seen that much of ordinary string theory yet. The aim of this mini-course is to allow those people to discover the subject in roughly the same way as it was discovered historically in the first few years of its development. The results obtained in this period are often the starting point of more advanced texts, so hopefully this review will give the reader a solid basis for studying the many later developments in the field. 1.2 Background assumed Of course, no introduction can be completely self-contained, so let me say a few words about the background knowledge the reader is assumed to have. These notes are written with a mathematically interested physicist reader in mind, which probably means that the physically interested mathematician reader will find too much dwelling upon mathematical minutiae and too many vague statements about physical constructions for his liking. On the other hand, even though a lot of the mathematical background is reviewed in some detail in the next section, a reader having no familiarity whatsoever with these subjects will have a hard time keeping track of the story. In particular, some background in differ- ential geometry and topology can be quite useful. A reader knowing at least two or three out of four of the concepts “differential form”, “cohomology class”, “vector bundle” and “connection” is probably at exactly the right level for this course. Readers knowing less will simply have to put in some more work; readers knowing much more might be looking at the wrong text, but are of course still invited to read along. (And for those in this category: comments are very welcome!) I also assume some background in linear algebra; in particular, the reader should be familiar with the concept of the dual of a vector space. Finally, I assume the reader knows what a projective space (such as CP 1) is. If necessary, explanations of such concepts can be found in the references that I mention in the section “Literature” below. As a physics background, this text requires at least some familiarity with quantum field theory, both in the operator and in the path integral formalism – and some intuition about how the two are related. Not many advanced technical results will be used; the 3 reader should just have a feeling for what a quantum field theory is. Furthermore, one needs some familiarity with fermion fields and the rules of integration and differentiation of anti-commuting (Grassmann) variables. Some knowledge of supersymmetry is also highly recommended. From general relativity, the reader should know the concepts of a metric and the Riemann and Ricci tensors. Apart from the last section, the text does not really require any knowledge about string theory, though of course some familiarity with this subject will make the purpose of it all a lot more transparent. In particular, in chapter 6, it is very useful to know some conformal field theory, and to be familiar with how scattering diagrams in string theory at arbitrary loop order should (in principle) be calculated. The last section of these notes, section 7, deals with the applications of topological string theory. Of course, if one does not know the subjects that the theory is applied to, one will not be very impressed by its applications. Therefore, to appreciate this section, the reader needs a bit more knowledge of the current state of affairs in string theory. This section falls outside the main aim of the lectures outlined above; it is intended as an a posteriori rationale for it all, and as an appetizer for the reader to start reading the more advanced introductions and research papers on the subject. 1.3 Overview In section 2, I start by reviewing the necessary mathematical background. After a short introduction about topology, serving as a motivation for the whole subject, I discuss the important technical concepts that will be needed throughout the text: homology and cohomology, vector bundles and connections. This section is only intended to cover the basics, so the more mathematically inclined reader
Recommended publications
  • Compactifying M-Theory on a G2 Manifold to Describe/Explain Our World – Predictions for LHC (Gluinos, Winos, Squarks), and Dark Matter
    Compactifying M-theory on a G2 manifold to describe/explain our world – Predictions for LHC (gluinos, winos, squarks), and dark matter Gordy Kane CMS, Fermilab, April 2016 1 OUTLINE • Testing theories in physics – some generalities - Testing 10/11 dimensional string/M-theories as underlying theories of our world requires compactification to four space-time dimensions! • Compactifying M-theory on “G2 manifolds” to describe/ explain our vacuum – underlying theory - fluxless sector! • Moduli – 4D manifestations of extra dimensions – stabilization - supersymmetry breaking – changes cosmology first 16 slides • Technical stuff – 18-33 - quickly • From the Planck scale to EW scale – 34-39 • LHC predictions – gluino about 1.5 TeV – also winos at LHC – but not squarks - 40-47 • Dark matter – in progress – surprising – 48 • (Little hierarchy problem – 49-51) • Final remarks 1-5 2 String/M theory a powerful, very promising framework for constructing an underlying theory that incorporates the Standard Models of particle physics and cosmology and probably addresses all the questions we hope to understand about the physical universe – we hope for such a theory! – probably also a quantum theory of gravity Compactified M-theory generically has gravity; Yang- Mills forces like the SM; chiral fermions like quarks and leptons; softly broken supersymmetry; solutions to hierarchy problems; EWSB and Higgs physics; unification; small EDMs; no flavor changing problems; partially observable superpartner spectrum; hidden sector DM; etc Simultaneously – generically Argue compactified M-theory is by far the best motivated, and most comprehensive, extension of the SM – gets physics relevant to the LHC and Higgs and superpartners right – no ad hoc inputs or free parameters Take it very seriously 4 So have to spend some time explaining derivations, testability of string/M theory Don’t have to be somewhere to test theory there – E.g.
    [Show full text]
  • Report of the Supersymmetry Theory Subgroup
    Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale.
    [Show full text]
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • 1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
    1. INTRODUCTION 1.1. Introductory remarks on supersymmetry. 1.2. Classical mechanics, the electromagnetic, and gravitational fields. 1.3. Principles of quantum mechanics. 1.4. Symmetries and projective unitary representations. 1.5. Poincar´esymmetry and particle classification. 1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl - equations. 1.7. Bosons and fermions. 1.8. Supersymmetry as the symmetry of Z2{graded geometry. 1.1. Introductory remarks on supersymmetry. The subject of supersymme- try (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymme- try was discovered in the early 1970's, and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincar´e,Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincar´esymmetry in the classification of elemen- tary particles, and permutation symmetry in the treatment of systems of identical particles. Supersymmetry is a new kind of symmetry which was discovered by the physicists in the early 1970's. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence1.
    [Show full text]
  • Duality and Strings Dieter Lüst, LMU and MPI München
    Duality and Strings Dieter Lüst, LMU and MPI München Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) ➢ Madrid (Spanish) Quiver ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • Of Operator Algebras Vern I
    proceedings of the american mathematical society Volume 92, Number 2, October 1984 COMPLETELY BOUNDED HOMOMORPHISMS OF OPERATOR ALGEBRAS VERN I. PAULSEN1 ABSTRACT. Let A be a unital operator algebra. We prove that if p is a completely bounded, unital homomorphism of A into the algebra of bounded operators on a Hubert space, then there exists a similarity S, with ||S-1|| • ||S|| = ||p||cb, such that S_1p(-)S is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of p-dilations to contractions can be deduced from this result. 1. Introduction. In [6] we proved that a homomorphism p of an operator algebra is similar to a completely contractive homomorphism if and only if p is completely bounded. It was known that if S is such a similarity, then ||5|| • ||5_11| > ||/9||cb- However, at the time we were unable to determine if one could choose the similarity such that ||5|| • US'-1!! = ||p||cb- When the operator algebra is a C*- algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity S such that ||5|| • ||5_1|| = ||p||cb- Completely contractive homomorphisms are central to the study of the repre- sentation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a ^representation on some larger Hilbert space of any C*- algebra which contains the operator algebra.
    [Show full text]
  • Robot and Multibody Dynamics
    Robot and Multibody Dynamics Abhinandan Jain Robot and Multibody Dynamics Analysis and Algorithms 123 Abhinandan Jain Ph.D. Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109 USA [email protected] ISBN 978-1-4419-7266-8 e-ISBN 978-1-4419-7267-5 DOI 10.1007/978-1-4419-7267-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938443 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) In memory of Guillermo Rodriguez, an exceptional scholar and a gentleman. To my parents, and to my wife, Karen. Preface “It is a profoundly erroneous truism, repeated by copybooks and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • From String Theory and Moonshine to Vertex Algebras
    Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential).
    [Show full text]