Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis Miroslav Sotak Pavol Jozef Safarik University in Kosice

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis Miroslav Sotak Pavol Jozef Safarik University in Kosice Genetics, Development and Cell Biology Genetics, Development and Cell Biology Publications 7-2016 Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis Miroslav Sotak Pavol Jozef Safarik University in Kosice Odeta Czerankova Pavol Jozef Safarik University in Kosice Daniel Klein Pavol Jozef Safarik University in Kosice Zuzana Jurcackova Pavol Jozef Safarik University in Kosice Ling Li IFoowlalo Swta tthie Usn iaverndsit ay,dd lilinitg@iionalast wateork.edus at: http://lib.dr.iastate.edu/gdcb_las_pubs Part of the Genetics Commons, Genomics Commons, Molecular Genetics Commons, and the See next page for additional authors Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ gdcb_las_pubs/157. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Genetics, Development and Cell Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Genetics, Development and Cell Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Authors Miroslav Sotak, Odeta Czerankova, Daniel Klein, Zuzana Jurcackova, Ling Li, and Eva Cellarova This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/gdcb_las_pubs/157 fpls-07-01039 July 11, 2016 Time: 11:35 # 1 ORIGINAL RESEARCH published: 13 July 2016 doi: 10.3389/fpls.2016.01039 Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis Miroslav Soták1*, Odeta Czeranková1, Daniel Klein2, Zuzana Jurcackovᡠ1, Ling Li3,4 and Eva Cellárovᡠ1 1 Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia, 2 Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia, 3 Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA, 4 Center for Metabolic Biology, Iowa State University, Ames, IA, USA Next generation sequencing technology rapidly developed research applications in the field of plant functional genomics. Several Hypericum spp. with an aim to generate and enhance gene annotations especially for genes coding the enzymes supposedly included in biosynthesis of valuable bioactive compounds were analyzed. The first Edited by: de novo transcriptome profiling of Hypericum annulatum Moris, H. tomentosum L., Ludger Beerhues, H. kalmianum L., and H. androsaemum L. leaves cultivated in vitro was accomplished. Technische Universität Braunschweig, Germany All four species with only limited genomic information were selected on the basis of Reviewed by: differences in ability to synthesize hypericins and presence of dark nodules accumulating Hubert Schaller, these metabolites with purpose to enrich genomic background of Hypericum spp. Institut de Biologie Moléculaire des Plantes–CNRS, France H. annulatum was chosen because of high number of the dark nodules and high content Kexuan Tang, of hypericin. H. tomentosum leaves are typical for the presence of only 1–2 dark nodules Shanghai Jiao Tong University, China localized in the apical part. Both H. kalmianum and H. androsaemum lack hypericin and *Correspondence: have no dark nodules. Four separated datasets of the pair-end reads were gathered Miroslav Soták [email protected] and used for de novo assembly by Trinity program. Assembled transcriptomes were annotated to the public databases Swiss-Prot and non-redundant protein database Specialty section: (NCBI-nr). Gene ontology analysis was performed. Differences of expression levels in This article was submitted to Plant Metabolism the marginal tissues with dark nodules and inner part of leaves lacking these nodules and Chemodiversity, indicate a potential genetic background for hypericin formation as the presumed site of a section of the journal Frontiers in Plant Science hypericin biosynthesis is in the cells adjacent to these structures. Altogether 165 contigs Received: 26 February 2016 in H. annulatum and 100 contigs in H. tomentosum were detected as significantly Accepted: 01 July 2016 differentially expressed (P < 0.05) and upregulated in the leaf rim tissues containing the Published: 13 July 2016 dark nodules. The new sequences homologous to octaketide synthase and enzymes Citation: catalyzing phenolic oxidative coupling reactions indispensable for hypericin biosynthesis Soták M, Czeranková O, Klein D, JurcackovᡠZ, Li L and CellárovᡠE were discovered. The presented transcriptomic sequence data will improve current (2016) Comparative Transcriptome knowledge about the selected Hypericum spp. with proposed relation to hypericin Reconstruction of Four Hypericum Species Focused on Hypericin biosynthesis and will provide a useful resource of genomic information for consequential Biosynthesis. studies in the field of functional genomics, proteomics and metabolomics. Front. Plant Sci. 7:1039. doi: 10.3389/fpls.2016.01039 Keywords: Hypericum spp., RNA-Seq, de novo assembly, differential expression analysis, hypericin Frontiers in Plant Science | www.frontiersin.org 1 July 2016 | Volume 7 | Article 1039 fpls-07-01039 July 11, 2016 Time: 11:35 # 2 Soták et al. Transcriptome Hypericum Species Hypericin Biosynthesis INTRODUCTION 2003) in leaves. The group of genes coding POCPs belongs to PR-10 genes family (Fernandes et al., 2013). Phenolic Hypericum is the genus with 496 species of plants spread oxidative coupling proteins share sequences of SRPBCC worldwide (Nürk et al., 2013). The most of them are typical for (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain compounds with anti-cancer (Agostinis et al., 2002), antioxidant superfamily. (Silva et al., 2005), anti-viral (Birt et al., 2009), and anti-depressive (Butterweck, 2003) properties. Dark nodules (glands), the sites of hypericin accumulation are characteristic for approximately MATERIALS AND METHODS 2/3 of the taxonomic sections and are limited to particular organs (Robson, 2003). The metabolome of leaf tissue samples Plant Material and RNA Extraction of ex vitro grown plants from the proximity to the dark nodules Hypericum annulatum Moris, H. tomentosum L., in Hypericum perforatum containing hypericin was visualized H. androsaemum L., and H. kalmianum L. plants were cultivated by the use of matrix-assisted laser desorption/ionization high- in vitro on basal medium containing salts according to Murashige resolution mass spectrometry (MALDI-HRMS; Kusari et al., and Skoog(1962), Gamborg’s B5 vitamins (Gamborg et al., 1968), −1 −1 −1 2015). This study suggested the site of hypericin biosynthesis 30 g.l sucrose, 100 mg.l myoinositol, 2 mg.l glycine, and −1 ◦ is in dark nodules and adjacent leaf tissues. The localization 7 g.l agar. The plants were grown in the chamber at 23 C, 40% of hypericin in dark nodules of the leaves of Hypericum spp. relative humidity, 16/8 h day/night photoperiod and artificial −2 −1 cultured in vitro was also qualitatively assessed by desorption irradiation of 80 mmol m s . Leaf tissues from 4-week electrospray ionization mass spectrometry imaging (DESI-MSI). old seedlings were processed on ice under sterile conditions, ◦ The presence of hypericin in closeness of the dark nodules was frozen rapidly in liquid nitrogen and kept at −80 C till the RNA confirmed in H. annulatum, H. perforatum, and H. tomentosum, extraction. while in H. androsaemum and H. kalmianum it was not detected The marginal parts of the leaves with dark nodules (Kucharíková et al., 2016). Hypericin biosynthesis consists of (H. annulatum) and apical part of leaves with 1–2 dark nodules experimentally not yet proven subsequent reactions (Figure 1). (H. tomentosum) were separated from the inner part leaf Acetyl-CoA is condensed with seven molecules of malonyl- tissues lacking dark nodules (Figure 2). Whole leaves were CoA to form the octaketide chain. This undergoes specific collected from H. androsaemum and H. kalmianum seedlings. cyclization to form emodin anthrone, the immediate precursor of Each sample contained approximately 10 individual genetically hypericin, catalyzed by the octaketide synthase (OKS). Emodin identical plants representing biological replicates from one is converted to protohypericin, followed by condensation and specimen. The frozen tissues were homogenized by TissueLyser TM transformation reaction leading to hypericin under visible light II (Qiagen) and total RNA was extracted with Spectrum Plant irradiation (Bais et al., 2003; Zobayed et al., 2006). This study Total RNA Kit (Sigma–Aldrich) according to manufacturer’s was dedicated to identify new genes involved in the hypericin protocol. The quality of total RNA was analyzed on the basis biosynthesis pathway by approach of functional genomics. of UV absorption ratios by NanoDrop spectrophotometer 2000 Next generation sequencing (NGS) method, especially RNA- (Thermo Scientific) and the RNA integrity was determined on Seq (RNA sequencing) used for cDNA identification enables 2100 Bioanalyzer (Agilent Technologies). deeper view into biological mechanisms with a potential to reveal unprecedented complexity of the transcriptomes in non-model Determination of Polyketides Content in plants. Hypericum spp. Leaves To-date, the only available NGS data of the genus Hypericum The experimental design of current transcriptomic paper was are
Recommended publications
  • PRE Evaluation Report for Hypericum X Inodorum 'Kolmapuki' PUMPKIN
    PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Plant Risk Evaluator -- PRE™ Evaluation Report Hypericum x inodorum 'Kolmapuki' PUMPKIN -- Illinois 2017 Farm Bill PRE Project PRE Score: 14 -- Evaluate this plant further Confidence: 57 / 100 Questions answered: 20 of 20 -- Valid (80% or more questions answered) Privacy: Public Status: Submitted Evaluation Date: September 16, 2017 This PDF was created on June 15, 2018 Page 1/19 PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Plant Evaluated Hypericum x inodorum 'Kolmapuki' PUMPKIN Image by Dobbie Garden Centres Page 2/19 PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Evaluation Overview A PRE™ screener conducted a literature review for this plant (Hypericum x inodorum 'Kolmapuki' PUMPKIN) in an effort to understand the invasive history, reproductive strategies, and the impact, if any, on the region's native plants and animals. This research reflects the data available at the time this evaluation was conducted. Summary The attractive fruits of Hypericum x inodorum contain copious seeds which germinate easily, and this constitutes the primary risk of invasion in Illinois. There is no evidence of vegetative reproduction. This hybrid is not naturalized or invasive in a climate similar to Illinois and neither are its parent species, H. androsaemum and H. hircinum. Cold hardiness may be a limiting factor in Illinois. Information on dispersal and impacts are borrowed from the literature on H. androsaemum in Australia, where it and H. x inodorum are declared noxious weeds. Confidence levels are lowered for those answers, which seem somewhat speculative, but important to consider nonetheless. General Information Status: Submitted Screener: Emily Russell Evaluation Date: September 16, 2017 Plant Information Plant: Hypericum x inodorum 'Kolmapuki' PUMPKIN If the plant is a cultivar, how does its behavior differs from its parent's? Hypericum x inodorum is a hybrid between H.
    [Show full text]
  • Antiproliferative Effects of St. John's Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies
    International Journal of Molecular Sciences Review Antiproliferative Effects of St. John’s Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies Alessandro Allegra 1,* , Alessandro Tonacci 2 , Elvira Ventura Spagnolo 3, Caterina Musolino 1 and Sebastiano Gangemi 4 1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; [email protected] 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; [email protected] 3 Section of Legal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; [email protected] 4 School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-221-2364 Abstract: Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John’s Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies.
    [Show full text]
  • Hypericum Aviculariifolium Subsp. Depilatum Var. Depilatum Ve H
    MJAVL Manas Journal of Agriculture Veterinary and Life Sciences ISSN 1694-7932 | e-ISSN 1694-7932 Volume 9 (Issue 1) (2019) Pages 14-21 Hypericum aviculariifolium subsp. depilatum var. depilatum ve H. pruinatum da In Vitro Tohum Çimlenmesi Ertan Sait Kurtar1, Cüneyt Çırak2* 1Selçuk Üniversitesi Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Konya, TÜRKİYE 2Ondokuz Mayıs Üniversitesi, Bafra Meslek Yüksekokulu, Samsun, TÜRKİYE *e-mail: [email protected] ÖZET MAKALE BİLGİSİ Bu çalışmada H. aviculariifolium subsp. depilatum var. depilatum ve H. pruinatum’da etkili Araştırma Makalesi bir çimlenme protokolü geliştirmek ve müteakip bitki gelişimini izlemek amaçlanmıştır. Bu Geliş: 27.06.2019 amaçla yüzey sterilizasyonu yapılmış tohumlar farklı oranlarda benzil adenin (BA), Kabul:24.09.2019 giberellik asit (GA) ve indol asetik asit (IAA) içeren temel MS (Murashige ve Skoog) Anahtar kelimeler: ortamlarında magenta kutuları içerisinde kültüre alınmışlardır. 12. günün sonunda kökçük Kantaron, çimlenme, geliştirmiş ve 1-2 yaprakçık oluşturmuş fideler sayılmış ve her deneysel ortam için dormansi, in vitro kültür, çimlenme oranları % olarak belirlenmiştir. Ortamlarının çimlenme üzerine etkileri her iki bitki büyüme türde de önemli (P < 0.01) olarak tespit edilmiş, en yüksek çimlenme oranına 2 mg/l BA, düzenleyicileri. 0.1 mg/l IAA ve 0.5 mg/l GA ile desteklenmiş MS tuzları içeren G9 ortamında ulaşılmıştır (H. aviculariifolium subsp. depilatum var. depilatum için %76.2; H. pruinatum için %89.4). Bu ortamda alt kültüre alınan çimlenmesini tamamlamış genç bitkicikler 6 hafta sonra ortalama 8-10 cm uzunluğa ulaşmış ve başarılı bir şekilde sera şartlarına adapte edilmişlerdir. In vitro seed germination of Hypericum aviculariifolium subsp. depilatum var. depilatum and H. pruinatum ABSTRACT ARTICLE INFO In the present study, it was aimed to describe an effective germination protocol and to Research article screen subsequent plant development for H.
    [Show full text]
  • HERBARIUM COLLECTION by SAVA PETROVIĆ in the HERBARIUM of the NATURAL HISTORY MUSEUM in BELGRADE INTRODUCTION the General Herb
    Bulletin of the Natural History Museum, 2011, 4: 67-118. Received 07 Sep 2011; Accepted 02 Dec 2011. UDC: 58.082.5:069.51(497.11)"1876/1886" ; 929:61 Петровић С. HERBARIUM COLLECTION BY SAVA PETROVIĆ IN THE HERBARIUM OF THE NATURAL HISTORY MUSEUM IN BELGRADE MIROSLAV JOVANOVIĆ Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia, e-mail: [email protected] The General Herbarium of the Natural History Museum (BEO) includes part of the herbarium material collected by the great Serbian botanist Dr Sava Petrović (1839-1889). Considering the importance of S. Petrović’s work for the botanical science of the 19th century, his herbarium has an important position from both a scientific and a museological standpoint. This herbarium collection has been conserved and inventoried. It was determined that it includes 648 herbarium sheet covers with 629 plant species, and the average age of the museum specimens is around 130 years. Key words: Sava Petrović, Herbarium, Natural History Museum, Belgrade INTRODUCTION The General Herbarium of the Balkan Peninsula at the Natural History Museum in Belgrade (BEO) includes collections of mosses, fungi, lichens and higher plants. The largest collection is the Collection of Higher Plants, 68 JOVANOVIĆ, M.: HERBARIUM COLLECTION BY SAVA PETROVIĆ with over 160,000 herbarium sheet covers and more than 500,000 specimens distributed in 2210 herbarium boxes. In addition to the “A collection” of type material from the treasury of herbarium at the Natural History Museum, the oldest collections prepared by the pioneers of Serbian botany, Dr Josif Pančić and Dr Sava Petrović, must also be mentioned.
    [Show full text]
  • Bulletin of the Natural History Museum
    Bulletin of _ The Natural History Bfit-RSH MU8&M PRIteifTBD QENERAl LIBRARY Botany Series VOLUME 23 NUMBER 2 25 NOVEMBER 1993 The Bulletin of The Natural History Museum (formerly: Bulletin of the British Museum (Natural History)), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology. The Botany Series is edited in the Museum's Department of Botany Keeper of Botany: Dr S. Blackmore Editor of Bulletin: Dr R. Huxley Assistant Editor: Mrs M.J. West Papers in the Bulletin are primarily the results of research carried out on the unique and ever- growing collections of the Museum, both by the scientific staff and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. All papers submitted for publication are subjected to external peer review for acceptance. A volume contains about 160 pages, made up by two numbers, published in the Spring and Autumn. Subscriptions may be placed for one or more of the series on an annual basis. Individual numbers and back numbers can be purchased and a Bulletin catalogue, by series, is available. Orders and enquiries should be sent to: Intercept Ltd. P.O. Box 716 Andover Hampshire SPIO lYG Telephone: (0264) 334748 Fax: (0264) 334058 WorW Lwr abbreviation: Bull. nat. Hist. Mus. Lond. (Bot.) © The Natural History Museum, 1993 Botany Series ISSN 0968-0446 Vol. 23, No. 2, pp. 55-177 The Natural History Museum Cromwell Road London SW7 5BD Issued 25 November 1993 Typeset by Ann Buchan (Typesetters), Middlesex Printed in Great Britain at The Alden Press.
    [Show full text]
  • Elucidation of Anti-Inflammatory Constituents in Hypericum
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages Kimberly Dawn Petry Hammer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics and Genomics Commons Recommended Citation Hammer, Kimberly Dawn Petry, "Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages" (2008). Retrospective Theses and Dissertations. 15774. https://lib.dr.iastate.edu/rtd/15774 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages by Kimberly Dawn Petry Hammer A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Diane Birt, Major Professor Jeff Essner Marian Kohut Chris Tuggle Michael Wannemuehler Iowa State University Ames, Iowa 2008 Copyright © Kimberly Dawn Petry Hammer, 2008. All rights reserved. 3337385 3337385 2009 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS vi ABBREVIATIONS vii LIST OF TABLES ix LIST OF FIGURES x ABSTRACT xi CHAPTER 1.
    [Show full text]
  • The Potential of Fungal Pathogens to Control Hypericum Species In
    Plant Protection Quarterly Vol.12(2) 1997 81 necrotic areas, producing acervuli and of- ten perithecia – the sexual stage. The potential of fungal pathogens to control The C. gloeosporioides hyperici strain has Hypericum species in Australia been described as an ‘orphan’ myco- herbicide (Templeton 1992). It has been A A B demonstrated to be effective in the field D.A. McLaren , E. Bruzzese and I.G. Pascoe for specific weed control but has not been A Department of Natural Resources and Environment, Keith Turnbull Research developed for commercial use. A low level Institute and Co-operative Research Centre or Weed Management Systems, PO market of potential in comparison to that Box 48, Frankston, Victoria 3199, Australia. of broad-spectrum chemical herbicides is a B Institute for Horticultural Development, 621 Burwood Highway, Knoxfield, major reason for lack of commercial inter- Victoria 3180, Australia. est in this potential mycoherbicide (Templeton 1992). Shepherd (1995) tested two Canadian Abstract isolates of C. gloeosporioides against three Two fungal pathogens that attack either The Colletotrichum genus has been de- recognised Australian strains of H. St. John’s wort (Hypericum perforatum) scribed (Barnett and Hunter 1972). The perforatum (narrow-leaved, intermediate- or tutsan (Hypericum androsaemum) are genus is part of the Imperfect fungi and leaved and broad-leaved; see Campbell et discussed. The fungus, Colletotrichum has the following distinguishing features: al. 1997) and untyped plants collected from gloeosporioides, is host-specific and • Acervuli disc-shaped or cushion- various areas of Victoria, New South causes significant damage to H. shaped, waxy, subepidermal, typically Wales and Canada. Both C.
    [Show full text]
  • Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
    Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Naturally Occurring Xanthones: Chemistry and Biology
    Hindawi Journal of Applied Chemistry Volume 2021, Article ID 8725409, 1 page https://doi.org/10.1155/2021/8725409 Retraction Retracted: Naturally Occurring Xanthones: Chemistry and Biology Journal of Applied Chemistry Received 3 February 2021; Accepted 3 February 2021; Published 15 March 2021 Copyright © 2021 Journal of Applied Chemistry. !is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Journal of Applied Chemistry has retracted the article titled References “Naturally Occurring Xanthones: Chemistry and Biology” [1]. !e article was found to contain a substantial amount of [1] S. Negi, V. K. Bisht, P. Singh, M. S. M. Rawat, and G. P. Joshi, overlapping material from previously published articles, “Naturally occurring xanthones: chemistry and biology,” including the following sources cited as [2–5]: Journal of Applied Chemistry, vol. 2013, Article ID 621459, 9 pages, 2013. (i) Kurt Hostettmann, Hildebert Wagner, “Xanthone [2] H. Kurt and H. Wagner, “Xanthone glycosides,” Phytochem- glycosides,” Phytochemistry, Volume 16, Issue 7, istry, vol. 16, no. 7, pp. 821–829, 1977. 1977, Pages 821–829, ISSN 0031-9422, doi: 10.1016/ [3] L. M. M. Vieira and A. Kijjoa, “Naturally-occurring xanthones: S0031-9422(00)86673-X [2]. recent developments,” Current Medicinal Chemistry, vol. 12, no. 21, 2005. (ii) L. M.M. Vieira, A. Kijjoa, Naturally-occurring [4] S. R. Jensen and J. Schripsema, “Chemotaxonomy and phar- xanthones: recent developments, Current Medicinal macology of Gentianaceae,” in Gentianaceae-Systematics and Chemistry, Volume 12, Issue 21, 2005, doi: 10.2174/ Natural History, V.
    [Show full text]
  • Revision of the Genus Hypericum L. (Hypericaceae) in Three Herbarium Collections from Serbia
    Bulletin of the Natural History Museum, 2014, 7: 93-127. Received 21 Jul 2014; Accepted 30 Aug 2014. DOI:10.5937/bnhmb1407093Z UDC: 582.684.1.082.5(497.11) REVISION OF THE GENUS HYPERICUM L. (HYPERICACEAE) IN THREE HERBARIUM COLLECTIONS FROM SERBIA BOJAN ZLATKOVIĆ1, MARKO NIKOLIĆ1, MILJANA DRNDAREVIĆ2, MIROSLAV JOVANOVIĆ3, MARJAN NIKETIĆ3 1 University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia, e-mail: [email protected], [email protected] 2 Biological Society “Dr Sava Petrović”, Višegradska 33, 18000 Niš, Serbia, e-mail: [email protected] 3 Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia, e-mail: [email protected] This paper provides information on herbarium specimens of the genus Hypericum represented in several herbaria from Serbia. The reviewed collections include: Herbarium of Natural History Museum in Belgrade (BEO), Herbarium of the Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade (BEOU), and Herbarium of the Faculty of Sciences and Mathematics, Department of Biology and Ecology, University of Niš (HMN). Total number of 1108 herbarium sheets was examined, including 426 specimens stored in BEO, 484 in BEOU and 198 in HMN. The review of revised herbarium data for 18 plant species of the genus represented in the flora of Serbia is presented. Their distribution in Serbia is reconsidered according to obtained herbarium data and shown in the maps. Key words: Hypericum, herbarium material, revision, Serbia, distribution. 94 ZLATKOVIĆ, B. ET AL.: HYPERICUM L. IN COLLECTIONS FROM SERBIA INTRODUCTION Hypericum L. is the type and the largest genus of the family Hype- ricaceae, including 420-470 species, mostly herbaceous plants, shrubs, or rarely small trees or annual species classified into 30-36 sections according to the most recent reviews (Robson 1977, Stevens 2007, Crockett & Robson 2011).
    [Show full text]
  • Biosynthesis of Biphenyl and Dibenzofuran Phytoalexins in Sorbus Aucuparia Cell Cultures
    Biosynthesis of biphenyl and dibenzofuran phytoalexins in Sorbus aucuparia cell cultures Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Mohammed Nabil Ahmed Khalil aus Kairo / Ägypten 1. Referent: Professor Dr. Ludger Beerhues 2. Referent: Privatdozent Dr. Wolfgang Brandt eingereicht am: 27.05.2013 mündliche Prüfung (Disputation) am: 14.08.2013 Druckjahr 2013 „Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“ Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Chizzali C, Khalil MNA, Beurle T, Schuehly W, Richter K, Flachowsky H, Peil A, Hanke MV, Liu B, Beerhues L: Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestia cv. Holsteiner Cox and Pyrus communis cv. Conference . Phytochemistry 77: 179-185 (2012). Khalil MNA, Beuerle T, Müller A, Ernst L, Bhavanam VBR, Liu B, Beerhues L : Biosynthesis of the biphenyl phytoalexin aucuparin in Venturia inaequalis-treated Sorbus aucuparia cell cultures. Submitted (2013). Khalil MNA, Brandt W, Beuerle T, Liu B, Beerhues L: Charcterization of two cDNA encoding O-methyltransferases participating in biosynthesis of phytoalexins in Sorbus acuparia cell cultures.
    [Show full text]
  • Session 4: Target and Agent Selection
    Session 4: Target and Agent Selection Session 4 Target and Agent Selection 123 Biological Control of Senecio madagascariensis (fireweed) in Australia – a Long-Shot Target Driven by Community Support and Political Will A. Sheppard1, T. Olckers2, R. McFadyen3, L. Morin1, M. Ramadan4 and B. Sindel5 1CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia [email protected] [email protected] 2University of KwaZulu-Natal, Faculty of Science & Agriculture, Private Bag X01, Scottsville 3209, South Africa [email protected] 3PO Box 88, Mt Ommaney Qld 4074, Australia [email protected] 4State of Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King Street, Honolulu, HIUSA [email protected] 5School of Environmental and Rural Science, University of New England, Armidale NSW 2351 Australia [email protected] Abstract Fireweed (Senecio madagascariensis Poir.) biological control has a chequered history in Australia with little to show after 20 plus years. Plagued by local impacts, sporadic funding, a poor understanding of its genetics and its origins, and several almost genetically compatible native species, the fireweed biological control program has been faced with numerous hurdles. Hope has risen again, however, in recent years through the staunch support of a very proactive team of local stakeholders and their good fortune of finding themselves in a key electorate. The Australian Department of Agriculture, Fisheries and Forestry has recently funded an extendable two year project for exploration in the undisputed native range of fireweed in South Africa and a detailed search for agents that are deemed to be both effective and unable to attack closely related Australian Senecio species.
    [Show full text]