Integrating Fossils, Phylogenies, and Niche Models Into
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
PRE Evaluation Report for Hypericum X Inodorum 'Kolmapuki' PUMPKIN
PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Plant Risk Evaluator -- PRE™ Evaluation Report Hypericum x inodorum 'Kolmapuki' PUMPKIN -- Illinois 2017 Farm Bill PRE Project PRE Score: 14 -- Evaluate this plant further Confidence: 57 / 100 Questions answered: 20 of 20 -- Valid (80% or more questions answered) Privacy: Public Status: Submitted Evaluation Date: September 16, 2017 This PDF was created on June 15, 2018 Page 1/19 PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Plant Evaluated Hypericum x inodorum 'Kolmapuki' PUMPKIN Image by Dobbie Garden Centres Page 2/19 PRE Evaluation Report -- Hypericum x inodorum 'Kolmapuki' PUMPKIN Evaluation Overview A PRE™ screener conducted a literature review for this plant (Hypericum x inodorum 'Kolmapuki' PUMPKIN) in an effort to understand the invasive history, reproductive strategies, and the impact, if any, on the region's native plants and animals. This research reflects the data available at the time this evaluation was conducted. Summary The attractive fruits of Hypericum x inodorum contain copious seeds which germinate easily, and this constitutes the primary risk of invasion in Illinois. There is no evidence of vegetative reproduction. This hybrid is not naturalized or invasive in a climate similar to Illinois and neither are its parent species, H. androsaemum and H. hircinum. Cold hardiness may be a limiting factor in Illinois. Information on dispersal and impacts are borrowed from the literature on H. androsaemum in Australia, where it and H. x inodorum are declared noxious weeds. Confidence levels are lowered for those answers, which seem somewhat speculative, but important to consider nonetheless. General Information Status: Submitted Screener: Emily Russell Evaluation Date: September 16, 2017 Plant Information Plant: Hypericum x inodorum 'Kolmapuki' PUMPKIN If the plant is a cultivar, how does its behavior differs from its parent's? Hypericum x inodorum is a hybrid between H. -
Complete Iowa Plant Species List
!PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove -
Hypericum Aviculariifolium Subsp. Depilatum Var. Depilatum Ve H
MJAVL Manas Journal of Agriculture Veterinary and Life Sciences ISSN 1694-7932 | e-ISSN 1694-7932 Volume 9 (Issue 1) (2019) Pages 14-21 Hypericum aviculariifolium subsp. depilatum var. depilatum ve H. pruinatum da In Vitro Tohum Çimlenmesi Ertan Sait Kurtar1, Cüneyt Çırak2* 1Selçuk Üniversitesi Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Konya, TÜRKİYE 2Ondokuz Mayıs Üniversitesi, Bafra Meslek Yüksekokulu, Samsun, TÜRKİYE *e-mail: [email protected] ÖZET MAKALE BİLGİSİ Bu çalışmada H. aviculariifolium subsp. depilatum var. depilatum ve H. pruinatum’da etkili Araştırma Makalesi bir çimlenme protokolü geliştirmek ve müteakip bitki gelişimini izlemek amaçlanmıştır. Bu Geliş: 27.06.2019 amaçla yüzey sterilizasyonu yapılmış tohumlar farklı oranlarda benzil adenin (BA), Kabul:24.09.2019 giberellik asit (GA) ve indol asetik asit (IAA) içeren temel MS (Murashige ve Skoog) Anahtar kelimeler: ortamlarında magenta kutuları içerisinde kültüre alınmışlardır. 12. günün sonunda kökçük Kantaron, çimlenme, geliştirmiş ve 1-2 yaprakçık oluşturmuş fideler sayılmış ve her deneysel ortam için dormansi, in vitro kültür, çimlenme oranları % olarak belirlenmiştir. Ortamlarının çimlenme üzerine etkileri her iki bitki büyüme türde de önemli (P < 0.01) olarak tespit edilmiş, en yüksek çimlenme oranına 2 mg/l BA, düzenleyicileri. 0.1 mg/l IAA ve 0.5 mg/l GA ile desteklenmiş MS tuzları içeren G9 ortamında ulaşılmıştır (H. aviculariifolium subsp. depilatum var. depilatum için %76.2; H. pruinatum için %89.4). Bu ortamda alt kültüre alınan çimlenmesini tamamlamış genç bitkicikler 6 hafta sonra ortalama 8-10 cm uzunluğa ulaşmış ve başarılı bir şekilde sera şartlarına adapte edilmişlerdir. In vitro seed germination of Hypericum aviculariifolium subsp. depilatum var. depilatum and H. pruinatum ABSTRACT ARTICLE INFO In the present study, it was aimed to describe an effective germination protocol and to Research article screen subsequent plant development for H. -
Threats to Australia's Grazing Industries by Garden
final report Project Code: NBP.357 Prepared by: Jenny Barker, Rod Randall,Tony Grice Co-operative Research Centre for Australian Weed Management Date published: May 2006 ISBN: 1 74036 781 2 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Weeds of the future? Threats to Australia’s grazing industries by garden plants Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Weeds of the future? Threats to Australia’s grazing industries by garden plants Abstract This report identifies 281 introduced garden plants and 800 lower priority species that present a significant risk to Australia’s grazing industries should they naturalise. Of the 281 species: • Nearly all have been recorded overseas as agricultural or environmental weeds (or both); • More than one tenth (11%) have been recorded as noxious weeds overseas; • At least one third (33%) are toxic and may harm or even kill livestock; • Almost all have been commercially available in Australia in the last 20 years; • Over two thirds (70%) were still available from Australian nurseries in 2004; • Over two thirds (72%) are not currently recognised as weeds under either State or Commonwealth legislation. -
The Biodiversity of the Virunga Volcanoes
THE BIODIVERSITY OF THE VIRUNGA VOLCANOES I.Owiunji, D. Nkuutu, D. Kujirakwinja, I. Liengola, A. Plumptre, A.Nsanzurwimo, K. Fawcett, M. Gray & A. McNeilage Institute of Tropical International Gorilla Forest Conservation Conservation Programme Biological Survey of Virunga Volcanoes TABLE OF CONTENTS LIST OF TABLES............................................................................................................................ 4 LIST OF FIGURES.......................................................................................................................... 5 LIST OF PHOTOS........................................................................................................................... 6 EXECUTIVE SUMMARY ............................................................................................................... 7 GLOSSARY..................................................................................................................................... 9 ACKNOWLEDGEMENTS ............................................................................................................ 10 CHAPTER ONE: THE VIRUNGA VOLCANOES................................................................. 11 1.0 INTRODUCTION ................................................................................................................................ 11 1.1 THE VIRUNGA VOLCANOES ......................................................................................................... 11 1.2 VEGETATION ZONES ..................................................................................................................... -
Elucidation of Anti-Inflammatory Constituents in Hypericum
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages Kimberly Dawn Petry Hammer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics and Genomics Commons Recommended Citation Hammer, Kimberly Dawn Petry, "Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages" (2008). Retrospective Theses and Dissertations. 15774. https://lib.dr.iastate.edu/rtd/15774 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Elucidation of anti-inflammatory constituents in Hypericum perforatum extracts and delineation of mechanisms of anti-inflammatory activity in RAW 264.7 mouse macrophages by Kimberly Dawn Petry Hammer A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Diane Birt, Major Professor Jeff Essner Marian Kohut Chris Tuggle Michael Wannemuehler Iowa State University Ames, Iowa 2008 Copyright © Kimberly Dawn Petry Hammer, 2008. All rights reserved. 3337385 3337385 2009 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS vi ABBREVIATIONS vii LIST OF TABLES ix LIST OF FIGURES x ABSTRACT xi CHAPTER 1. -
The Potential of Fungal Pathogens to Control Hypericum Species In
Plant Protection Quarterly Vol.12(2) 1997 81 necrotic areas, producing acervuli and of- ten perithecia – the sexual stage. The potential of fungal pathogens to control The C. gloeosporioides hyperici strain has Hypericum species in Australia been described as an ‘orphan’ myco- herbicide (Templeton 1992). It has been A A B demonstrated to be effective in the field D.A. McLaren , E. Bruzzese and I.G. Pascoe for specific weed control but has not been A Department of Natural Resources and Environment, Keith Turnbull Research developed for commercial use. A low level Institute and Co-operative Research Centre or Weed Management Systems, PO market of potential in comparison to that Box 48, Frankston, Victoria 3199, Australia. of broad-spectrum chemical herbicides is a B Institute for Horticultural Development, 621 Burwood Highway, Knoxfield, major reason for lack of commercial inter- Victoria 3180, Australia. est in this potential mycoherbicide (Templeton 1992). Shepherd (1995) tested two Canadian Abstract isolates of C. gloeosporioides against three Two fungal pathogens that attack either The Colletotrichum genus has been de- recognised Australian strains of H. St. John’s wort (Hypericum perforatum) scribed (Barnett and Hunter 1972). The perforatum (narrow-leaved, intermediate- or tutsan (Hypericum androsaemum) are genus is part of the Imperfect fungi and leaved and broad-leaved; see Campbell et discussed. The fungus, Colletotrichum has the following distinguishing features: al. 1997) and untyped plants collected from gloeosporioides, is host-specific and • Acervuli disc-shaped or cushion- various areas of Victoria, New South causes significant damage to H. shaped, waxy, subepidermal, typically Wales and Canada. Both C. -
Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Integrating Fossils, Phylogenies, and Niche Models Into Biogeography to Reveal Ancient Evolutionary History: the Case of Hypericum (Hypericaceae)
Syst. Biol. 64(2):215–232, 2015 © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] DOI:10.1093/sysbio/syu088 Advance Access publication November 13, 2014 Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae) , ,∗ ANDREA S. MESEGUER1 2 ,JORGE M. LOBO3,RICHARD REE4,DAV I D J. BEERLING5, AND ISABEL SANMARTÍN1 1Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; 2INRA, UMR 1062 CBGP Campus International de Baillarguet, 34988 Montferrier-sur-Lez, France; 3Department of Biogeography and Global Change, Museo Nacional Ciencias 4 5 Naturales-CSIC, 28006 Madrid, Spain; Department of Botany, Field Museum of Natural History, Chicago, IL 60605, USA and Department of Animal Downloaded from and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK ∗ Correspondence to be sent to: Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; E-mail: [email protected] and [email protected] Received 31 January 2014; reviews returned 27 May 2014; accepted 7 November 2014 Associate Editor: Austin Mast http://sysbio.oxfordjournals.org/ Abstract.—In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that “the present is the key to the past.” Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. -
Vascular Flora of Worcester, Massachusetts
Vascular Flora of Worcester, Massachusetts Robert I. Bertin Special Publication of the New England Botanical Club Availability of this Publication: Electronic or paper copies are available at cost. Direct inquiries to the Special Publications Committee, New England Botanical Club, Harvard University Herbaria, 22 Divinity Ave. Cambridge, MA 02138-2020 About the Author: Robert I. Bertin is a professor of biology in the Biology Department at the College of the Holy Cross. He teaches a variety of courses, including ecology, environmental biology and field botany. His academic interests include the flora and natural history of New England, the sexual systems of flowering plants, and the ecology of invasive species. Additions and Corrections: Communications concerning mistakes in this flora or potential additions to the species list are welcome. Any substantive modifications will be posted under the author’s name on the Biology Department web page at the Holy Cross web site. The author can be contacted through the Biology Department or at [email protected]. Cover Illustrations: Pictured are three species portraying different aspects of the Worcester flora. Acer platanoides, or Norway maple, is a non-native species and the most commonly planted street tree in Worcester. It is prominent in many City woodlands, where it competes with native species. The grass Elymus villosus is a state threatened species. The Worcester record is the only known occurrence of the species in Worcester County. The orchid Calopogon tuberosus, a native bog species, is known in the City only from historical records. Figures reprinted from Holmgren et al. (1998) Illustrated Companion to Gleason and Cronquist’s Manual, with the kind permission of the New York Botanical Garden. -
Title: Occurrence of Temporarily-Introduced Alien Plant Species (Ephemerophytes) in Poland - Scale and Assessment of the Phenomenon
Title: Occurrence of temporarily-introduced alien plant species (ephemerophytes) in Poland - scale and assessment of the phenomenon Author: Alina Urbisz Citation style: Urbisz Alina. (2011). Occurrence of temporarily-introduced alien plant species (ephemerophytes) in Poland - scale and assessment of the phenomenon. Katowice : Wydawnictwo Uniwersytetu Śląskiego. Cena 26 z³ (+ VAT) ISSN 0208-6336 Wydawnictwo Uniwersytetu Œl¹skiego Katowice 2011 ISBN 978-83-226-2053-3 Occurrence of temporarily-introduced alien plant species (ephemerophytes) in Poland – scale and assessment of the phenomenon 1 NR 2897 2 Alina Urbisz Occurrence of temporarily-introduced alien plant species (ephemerophytes) in Poland – scale and assessment of the phenomenon Wydawnictwo Uniwersytetu Śląskiego Katowice 2011 3 Redaktor serii: Biologia Iwona Szarejko Recenzent Adam Zając Publikacja będzie dostępna — po wyczerpaniu nakładu — w wersji internetowej: Śląska Biblioteka Cyfrowa 4 www.sbc.org.pl Contents Acknowledgments .................. 7 Introduction .................... 9 1. Aim of the study .................. 11 2. Definition of the term “ephemerophyte” and criteria for classifying a species into this group of plants ............ 13 3. Position of ephemerophytes in the classification of synanthropic plants 15 4. Species excluded from the present study .......... 19 5. Material and methods ................ 25 5.1. The boundaries of the research area ........... 25 5.2. List of species ................. 25 5.3. Sources of data ................. 26 5.3.1. Literature ................. 26 5.3.2. Herbarium materials .............. 27 5.3.3. Unpublished data ............... 27 5.4. Collection of records and list of localities ......... 27 5.5. Selected of information on species ........... 28 6. Results ..................... 31 6.1. Systematic classification ............... 31 6.2. Number of localities ................ 33 6.3. Dynamics of occurrence ..............