Phylogeny, Detection, and Mating Behaviour of Mycosphaerella Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Castanedospora, a New Genus to Accommodate Sporidesmium
Cryptogamie, Mycologie, 2018, 39 (1): 109-127 © 2018 Adac. Tous droits réservés South Florida microfungi: Castanedospora,anew genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota) Gregorio DELGADO a,b*, Andrew N. MILLER c & Meike PIEPENBRING b aEMLab P&K Houston, 10900 BrittmoorePark Drive Suite G, Houston, TX 77041, USA bDepartment of Mycology,Institute of Ecology,Evolution and Diversity, Goethe UniversitätFrankfurt, Max-von-Laue-Str.13, 60438 Frankfurt am Main, Germany cIllinois Natural History Survey,University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA Abstract – The taxonomic status and phylogenetic placement of Sporidesmium pachyanthicola in Capnodiales(Dothideomycetes) are revisited based on aspecimen collected on the petiole of adead leaf of Sabal palmetto in south Florida, U.S.A. New evidence inferred from phylogenetic analyses of nuclear ribosomal DNA sequence data together with abroad taxon sampling at family level suggest that the fungus is amember of Extremaceaeand therefore its previous placement within the broadly defined Teratosphaeriaceae was not supported. Anew genus Castanedospora is introduced to accommodate this species on the basis of its distinct morphology and phylogenetic position distant from Sporidesmiaceae sensu stricto in Sordariomycetes. The holotype material from Cuba was found to be exhausted and the Florida specimen, which agrees well with the original description, is selected as epitype. The fungus produced considerably long cylindrical to narrowly obclavate conidia -
Gene Cluster Conservation Provides Insight Into Cercosporin Biosynthesis and Extends Production to the Genus Colletotrichum,” by Ronnie De Jonge, Malaika K
Correction AGRICULTURAL SCIENCES Correction for “Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum,” by Ronnie de Jonge, Malaika K. Ebert, Callie R. Huitt-Roehl, Paramita Pal, Jeffrey C. Suttle, Rebecca E. Spanner, Jonathan D. Neubauer, Wayne M. Jurick II, Karina A. Stott, Gary A. Secor, Bart P. H. J. Thomma, Yves Van de Peer, Craig A. Townsend, and Melvin D. Bolton, which was first published May 29, 2018; 10.1073/pnas.1712798115 (Proc Natl Acad Sci USA 115: E5459–E5466). The authors note that author Yves Van de Peer was in- correctly listed at affiliation aPlant-Microbe Interactions, De- partment of Biology, Science4Life, Utrecht University; and that this author’s affiliation at dBioinformatics Institute Ghent, Ghent University was incorrectly omitted. The corrected author and affiliation lines appear below. The online version has been corrected. Ronnie de Jongea,b,c,d,1,2, Malaika K. Eberte,f,g,1, Callie R. Huitt-Roehlh,1, Paramita Palh, Jeffrey C. Suttlee, Rebecca E. Spannere,f, Jonathan D. Neubauere, WayneM.JurickIIi,KarinaA.Stotte,f, Gary A. Secorf, Bart P. H. J. Thommag, Yves Van de Peerb,c,d,j,CraigA. Townsendh,2, and Melvin D. Boltone,f,2 aPlant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3584 CH, Utrecht, The Netherlands; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; cVIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; dBioinformatics Institute Ghent, Ghent University, -
Species Concepts in Cercospora: Spotting the Weeds Among the Roses
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 75: 115–170. Species concepts in Cercospora: spotting the weeds among the roses J.Z. Groenewald1*, C. Nakashima2, J. Nishikawa3, H.-D. Shin4, J.-H. Park4, A.N. Jama5, M. Groenewald1, U. Braun6, and P.W. Crous1, 7, 8 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514–8507, Japan; 3Kakegawa Research Center, Sakata Seed Co., 1743-2 Yoshioka, Kakegawa, Shizuoka 436-0115, Japan; 4Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; 5Department of Agriculture, P.O. Box 326, University of Reading, Reading RG6 6AT, UK; 6Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany; 7Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; 8Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: Johannes Z. Groenewald, [email protected] Abstract: The genus Cercospora contains numerous important plant pathogenic fungi from a diverse range of hosts. Most species of Cercospora are known only from their morphological characters in vivo. Although the genus contains more than 5 000 names, very few cultures and associated DNA sequence data are available. In this study, 360 Cercospora isolates, obtained from 161 host species, 49 host families and 39 countries, were used to compile a molecular phylogeny. Partial sequences were derived from the internal transcribed spacer regions and intervening 5.8S nrRNA, actin, calmodulin, histone H3 and translation elongation factor 1-alpha genes. -
(A Species).Cdr
BIOTROPIA Vol. 19 No. 1, 2012: 19 - 29 A SPECIES-SPECIFIC PCR ASSAY BASED ON THE INTERNAL TRANSCRIBED SPACER (ITS) REGIONS FOR IDENTIFICATION OF Mycosphaerella eumusae, M. fijiensis AND M. musicola ON BANANA IMAN HIDAYAT Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong 16911, West Java, Indonesia Recipient of BIOTROP Research Grant 2010/Accepted 28 June 2012 ABSTRACT A study on development of a rapid PCR-based detection method based on ITS region of M. eumusae, M. fijiensis , and M. musicola on banana was carried out. The main objecive of this study was to develop a fast and species-specific PCR-based detection method for the presence ofMycosphaerella species on banana. The methods include collection of specimens, morphological identification supported by molecular phylogenetic analysis, RFLP analysis, species-specific primers development, and validation. Two species ofMycosphaerella , namely, M. fijiensisand M. musicola , and one unidentified Pseudocercospora species were found in Java Island. Three restriction enzymes used in the RFLP analysis, viz, AluI, HaeIII, and TaqI were capable to discriminateM. eumusae , M. fijiensis , and M. musicola . Two species-specific primer pairs, viz, MfijF/MfijR and MmusF/MmusR have been successfully developed to detect the presence ofM. fijiensis and M. musicola , respectively. Key words: banana, detection, fungi,Mycosphaerella leaf spot, phytopathology INTRODUCTION Indonesia is one of banana production zones in Southeast Asia. However, crop losses from global climate change and fungal pathogens pose a serious threat not only to Indonesia, but also to global food security. Therefore, these threats should not be underestimated. Among the banana pathogens, three morphologically similar species, viz,Mycosphaerella fijiensis (black leaf streak disease/black Sigatoka), M. -
The Taxonomy, Phylogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western Australia
The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia By Aaron Maxwell BSc (Hons) Murdoch University Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University Perth, Western Australia April 2004 Declaration I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution Aaron Maxwell April 2004 II Acknowledgements This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received. I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell’s great wit has been a welcome addition to his wealth of knowledge. A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD’s research. Chris Dunne and Sarah Collins for writing advice. -
Isolation and Characterization of the Mating Type Locus Of
MOLECULAR PLANT PATHOLOGY (2007) 8(1), 111–120 DOI: 10.1111/J.1364-3703.2006.00376.X IsolationBlackwell Publishing Ltd and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana LAURA CONDE-FERRÁEZ1,*, CEES WAALWIJK2, BLONDY B. CANTO-CANCHÉ1, GERT H. J. KEMA2, PEDRO W. CROUS3, ANDREW C. JAMES1 AND EDWIN C. A. ABELN3,† 1Centro de Investigación Científica de Yucatán (CICY), Calle 43 no. 130, Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México 2Plant Research International B.V., PO Box 16, 6700 AA, Wageningen, The Netherlands 3Centraalbureau voor Schimmelcultures, Fungal Diversity Centre, PO Box 85167, 3508 AD, Utrecht, The Netherlands The crop is affected by several diseases and pests such as the SUMMARY foliar fungal pathogens Mycosphaerella fijiensis, M. musicola and Idiomorphs mat1-1 and mat1-2 from Mycosphaerella fijiensis, M. eumusae, which all share similar morphologies and symptom the causal agent of black leaf streak disease of banana, were development. M. fijiensis (anamorph Pseudocercospora fijiensis; isolated. Degenerate oligos were used to amplify the HMG box Mycosphaerellaceae) is the causal agent of Black Sigatoka or of the mat1-2 idiomorph from M. fijiensis, showing homology black leaf streak disease (BLSD), which rapidly became the most with the HMG box of Mycosphaerella graminicola. Using a DNA devastating disease of banana production world-wide. It decreases walking strategy, anchored on the DNA lyase gene towards the photosynthesis, reduces fruit size and induces premature HMG box, a 9-kb-long region of mat1-2 was obtained. A 5-kb maturation. The cost of controlling the disease in large fragment from the mat1-1 region was obtained by long-range plantations is about US$1000 per hectare (Arias et al., 2003), but PCR using primers on the flanking regions, which have close to it is higher in smaller plantations where fungicides cannot be 100% identity between both idiomorphs. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
The Genus Mycosphaerella and Its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines
COMMONWEALTH MYCOLOGICAL INSTITUTE Issued August 1984 Mycological Papers, No. 153 The Genus Mycosphaerella and its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines H. C. EVANS 1 SUMMARY Three important pine needle pathogens, with teleomorphs assigned to th~ genus Mycosphaerella Johanson, are described: M. dearnessii Barr; M. pini (E. Rostrup apud Munk) and M. gibsonii sp. novo Historical, morphological, ecological and pathological details are presented and discussed, based on the results of a three-year survey of Central American pine forests and supplemented by an examination of worldwide collections. The fungi, much better known by their anamorphs and the diseases they cause: Lecanosticta acicola (Thurn.) H. Sydow (Lecanosticta or brown-spot needle blight); Dothistroma septospora (Doroguine) Morelet (Dothistroma or red-band needle blight) and Cercoseptoria pini• densiflorae (Hori & Nambu) Deighton (Cercospora or brown needle blight), are considered to be indigenous to Central America, constituting part of the needle mycoflora of native pine species. M. dearnessii commonly occurred on pines in all the life zones investigated (tropical to temperate), M. pini was locally abundant in cloud forests but confined to this habitat, whilst M. gibsonii was rare. Significant, environmentally-related changes were noted in the anamorph of M. dearnessii from different collections. Conidia collected from pines growing in habitats exposed to a high light intensity were generally larger, more pigmented and ornamented compared with those from upland or cloud forest regions. These findings are discussed in relation to the parameters governing taxonomic significance. An appendix is included in which various pine-needle fungi collected in Central America, and thought likely to be confused with the aforementioned Mycosphaerella anamorphs are described: Lecanosticta cinerea (Dearn.) comb. -
Cladosporium Lebrasiae, a New Fungal Species Isolated from Milk Bread Rolls in France
fungal biology 120 (2016) 1017e1029 journal homepage: www.elsevier.com/locate/funbio Cladosporium lebrasiae, a new fungal species isolated from milk bread rolls in France Josiane RAZAFINARIVOa, Jean-Luc JANYa, Pedro W. CROUSb, Rachelle LOOTENa, Vincent GAYDOUc, Georges BARBIERa, Jerome^ MOUNIERa, Valerie VASSEURa,* aUniversite de Brest, EA 3882, Laboratoire Universitaire de Biodiversite et Ecologie Microbienne, ESIAB, Technopole^ Brest-Iroise, 29280 Plouzane, France bCBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands cMeDIAN-Biophotonique et Technologies pour la Sante, Universite de Reims Champagne-Ardenne, FRE CNRS 3481 MEDyC, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France article info abstract Article history: The fungal genus Cladosporium (Cladosporiaceae, Dothideomycetes) is composed of a large Received 12 February 2016 number of species, which can roughly be divided into three main species complexes: Cla- Received in revised form dosporium cladosporioides, Cladosporium herbarum, and Cladosporium sphaerospermum. The 29 March 2016 aim of this study was to characterize strains isolated from contaminated milk bread rolls Accepted 15 April 2016 by phenotypic and genotypic analyses. Using multilocus data from the internal transcribed Available online 23 April 2016 spacer ribosomal DNA (rDNA), partial translation elongation factor 1-a, actin, and beta- Corresponding Editor: tubulin gene sequences along with Fourier-transform infrared (FTIR) spectroscopy and Matthew Charles Fisher morphological observations, three isolates were identified as a new species in the C. sphaer- ospermum species complex. This novel species, described here as Cladosporium lebrasiae,is Keywords: phylogenetically and morphologically distinct from other species in this complex. Cladosporium sphaerospermum ª 2016 British Mycological Society. -
Hosts, Species and Genotypes: Opinions Versus Data Presented As
CSIRO PUBLISHING www.publish.csiro.au/journals/app Australasian Plant Pathology, 2005, 34, 463–470 Hosts, species and genotypes: opinions versus data Presented as a Keynote Address at the 15th Biennial Conference of the Australasian Plant Pathology Society, Geelong, Australia, 26–29 September 2005 P.W. CrousA,B and J. Z. GroenewaldA ACentraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. BCorresponding author. Email: [email protected] Abstract. We are currently in the middle of a revolution in fungal taxonomy. Taxonomy is at the crossroads, where phenotypic data must be merged with DNA and other data to facilitate accurate identifications. These data, linked to open access journals and databases, will facilitate the stability of nomenclature in the future. To achieve this, however, plant pathologists must embrace new technologies, and implement these policies in their research programmes. Additional keywords: Armillaria, Botryosphaeria, Cercospora, Cylindrocarpon, Cylindrocladium, Fusarium, Heterobasidium, MycoBank, Mycosphaerella, Ophiostoma, Phaeoacremonium, Phomopsis, Phytophthora, Pyrenophora, species concepts. Introduction Global trade is inextricably linked to the future, and plant Many recent plant pathology meetings have been focused pathologists will have to develop new tools to deal with this on themes incorporating elements such as ‘back to basics’, challenge. Currently, the occurrence of fungi in imported ‘meaningful’ or ‘practical’. What this means is that for a plant materials can be the basis for recommending rejection large part, the plant pathological community remains in step of shipments, a process that depends on the name linked with its mission, namely to reduce plant disease, feed the to the organism. Given the current complexity which I am masses, and enhance export of produce. -
Sigatoka Diseases Control
1 /4 SIGATOKA DISEASES CONTROL Yellow and Black Sigatoka are banana leaf diseases caused by fungi. They cause significant drying of the leaf surface. The fungi spread in two ways: - by water which carries the conidia (asexual form CONTROL of reproduction) from the upper to the lower leaves S E and suckers, S Conidia - yellow and black Sigatoka - by wind which carries the ascospores (sexual form EA of reproduction) in all directions. S The control of Sigatoka(s) enables the plant to conserve a sufficient number of healthy leaves up to harvest to ensure the normal growth of the fruit. The disease reduces the leaf surface and causes disturbances in the functioning of the plant, leading to a reduction in yield and quality DI SIGATOKA (particularly a higher risk of fast ripening). 1. YELLOW SIGATOKA OR LEAF STREAK DISEASE 2. BLACK SIGATOKA OR BLACK LEAF STREAK DISEASE (Mycosphaerella musicola) (Mycosphaerella fijiensis): A MORE VIRULENT FUNGUS The development of the fungus occurs in five stages: Black Sigatoka is present in almost all tropical banana producing FOR YELLOW SIGATOKA zones but its arrival in the Lesser Antilles is very recent (2009- Stage 1: A tiny yellow spot or light green streak on the upper surface of 2010). leaves. > Hardly observable. YELLOW SIGATOKA BLACK SIGATOKA Upper surface Lower surface 2.1-Description of symptoms and differentiation with Yellow Stage 2: The spots stretch out Sigatoka into yellow streaks of 3-4mm; this is the optimal stage for treatment. The symptoms of Black Sigatoka are sometimes not distinguishable from those of Yellow Sigatoka, especially in > Streaks 1 to 5 mm.