ANRV380-MR39-05 ARI 27 May 2009 14:25 Immersion Lithography: Photomask and Wafer-Level Materials Roger H. French and Hoang V. Tran DuPont Co. Central Research, E400-5207 Experimental Station, Wilmington, DE 19880-0400; email:
[email protected] Annu. Rev. Mater. Res. 2009. 39:93–126 Key Words First published online as a Review in Advance on by Dr. Roger French on 07/14/09. For personal use only. photoresist, pellicle, high-index fluid, phase shift, double patterning March 3, 2009 The Annual Review of Materials Research is online at Abstract matsci.annualreviews.org Optical immersion lithography utilizes liquids with refractive indices >1 This article’s doi: (the index of air) below the last lens element to enhance numerical aper- Annu. Rev. Mater. Res. 2009.39:93-126. Downloaded from arjournals.annualreviews.org 10.1146/annurev-matsci-082908-145350 ture and resolution, enabling sub-40-nm feature patterning. This shift from Copyright c 2009 by Annual Reviews. conventional dry optical lithography introduces numerous challenges re- All rights reserved quiring innovations in materials at all imaging stack levels. In this article, 1531-7331/09/0804-0093$20.00 we highlight the recent materials advances in photomasks, immersion fluids, topcoats, and photoresists. Some of the challenges encountered include the fluids’ and photomask materials’ UV durability, the high-index liquids’ com- patibility with topcoats and photoresists, and overall immersion imaging and defectivity performance. In addition, we include a section on novel materi- als and methods for double-patterning lithography—a technique that may further extend immersion technology by effectively doubling a less dense pattern’s line density.