Influence of Cycling Position and Crosswinds On
Total Page:16
File Type:pdf, Size:1020Kb
INFLUENCE OF CYCLING POSITION AND CROSSWINDS ON PERFORMANCE AND AERODYNAMICS “The angle matters“ By DANIËLLE MARIA FINTELMAN A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham April 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Wind is fundamentally important to cyclists since it affects their performance, bicycle control, balance and road safety. The overall aim of this research is to improve the understanding of the effect of cycling position and crosswinds on the aerodynamics and performance of a cyclist. The first part of this thesis focuses on cycling position. To minimise air resistance, cyclists lower their torso to become more aerodynamic. Results show that lowering torso angle is associated with impairment of physiological functioning, which can be explained by a combination of mechanical and muscular factors. Consequently, there is a trade-off between aerodynamic gains and physiological impairment. Therefore a mathematical model has been developed predicting the optimal torso angle at different cycling speeds. The second part of this thesis aims to understand the flow mechanics around a cyclist subjected to crosswinds. Both wind tunnel experiments and computational fluid dynamics simulations of the flow around a cyclist are used to reveal the effect of crosswinds on cyclists in different cycling positions. This thesis provides a unique approach to study cycling performance and safety by jointly investigating the human physiology and aerodynamic performance. ii ACKNOWLEDGEMENTS First and foremost I would like to express my sincere gratitude to my supervisors, dr. François-Xavier Li, prof. Mark Sterling and dr. Hassan Hemida, for their immense input and continuous support during my PhD. Without their guidance throughout my PhD, this thesis would have never been accomplished. I would like to thank you for your support and understanding over these past three years. I would also like to thank the undergraduate and postgraduate students who have helped me with the data collection and provided feedback on my research. Getting through a PhD requires more than academic support, and I have therefore many people to thank for being a listening ear and their support over the past three years. Most important in this were my family and boyfriend. I would like to thank my boyfriend Mark for his support, help and encouragement. Although our time in Birmingham has had its ups and downs, it was an unforgettable experience to study abroad. iii CONTENTS LIST OF PUBLICATIONS ..................................................................................................... viii ABBREVATIONS .................................................................................................................... xi NOMENCLATURE ................................................................................................................ xiii LIST OF FIGURES ................................................................................................................. xvi LIST OF TABLES ................................................................................................................. xxii CHAPTER 1 INTRODUCTION ................................................................................................ 1 1.1 Cycling aerodynamics ....................................................................................................... 2 1.1.1 Changing position ...................................................................................................... 2 1.1.2 Cycling equipment ..................................................................................................... 6 1.1.3 Surface roughness clothes ......................................................................................... 7 1.1.4 Drafting ...................................................................................................................... 8 1.1.5 Altitude ...................................................................................................................... 9 1.2 Assessment of aerodynamic performance ....................................................................... 10 1.2.1 Linear relationship ................................................................................................... 10 1.2.2 Wind tunnel experiments ......................................................................................... 10 1.2.3 Computational Fluid Dynamics ............................................................................... 12 1.3 Crosswinds on two-wheeled vehicles ............................................................................. 15 1.4 Goal and aims of this thesis............................................................................................. 17 1.5 Thesis outline .................................................................................................................. 20 CHAPTER 2 GENERAL METHODS ..................................................................................... 21 2.1 Kinesiology ..................................................................................................................... 21 2.1.1 Torso angle .............................................................................................................. 21 2.1.2 Oxygen consumption ............................................................................................... 22 iv 2.1.3 Crank torque ............................................................................................................ 24 2.1.4 Muscle activation ..................................................................................................... 25 2.2 Aerodynamics.................................................................................................................. 31 2.2.1 Aerodynamic forces and moments .......................................................................... 31 2.2.2 Frontal area .............................................................................................................. 32 2.2.3 Wind tunnel ............................................................................................................. 32 2.2.4 CFD fundamentals ................................................................................................... 36 2.2.5 Turbulence and CFD ............................................................................................... 39 CHAPTER 3 POSITION AND PHYSIOLOGY ..................................................................... 42 3.1 Introduction ..................................................................................................................... 43 3.2 Methods ........................................................................................................................... 45 3.3 Results ............................................................................................................................. 50 3.4 Discussion ....................................................................................................................... 54 3.5 Conclusion ....................................................................................................................... 58 CHAPTER 4 POSITION, MUSCLE ACTIVATION AND TORQUE ................................... 59 4.1 Introduction ..................................................................................................................... 60 4.2 Materials and methods .................................................................................................... 61 4.3 Results ............................................................................................................................. 65 4.4 Discussion ....................................................................................................................... 68 4.5 Perspectives ..................................................................................................................... 72 CHAPTER 5 OPTIMISATION OF POSITION ...................................................................... 74 5.1 Introduction ..................................................................................................................... 75 5.2 Method ............................................................................................................................ 77 5.2.1 Mathematical models ............................................................................................... 78 5.2.2 Experimental data collection ................................................................................... 82 5.3 Results ............................................................................................................................. 84 5.3.1 Models outcome .....................................................................................................