<<

Soudan Underground Laboratory: an Interdisciplinary Look

A.N. Villano (University of Minnesota) For the: Soudan Underground Lab, UMN/UMD Depts. Of Physics

12/18/12 A.N. Villano ‐ ASPERA Synergies 1 Depth and Locaon

12/18/12 A.N. Villano ‐ ASPERA Synergies 2 Depth and Locaon

• Level 27 contains laboratory • 710 m depth  2090 m.w.e • mine is not active • small experimental “overhead”

12/18/12 A.N. Villano ‐ ASPERA Synergies 3 Lab Layout – Level 27

12/18/12 A.N. Villano ‐ ASPERA Synergies 4 Precision Physics

• (left) Soudan 2 modules • searching for • active 1987 – 2001 • 1k ton mass

• (right) CDMS inner detector • dark matter direct detection (WIMP) • active 2000 – 2015 • ~10 kg Germanium in SuperCDMS • operation at 50 – 60 mK

12/18/12 A.N. Villano ‐ ASPERA Synergies 5 Precision Physics

• (above) MINOS detector

• νµ disappearance from Fermilab beam • active 1998 – 2015 • 5.5k ton iron • (right) CoGeNT detector • dark matter direct detection (WIMP) • active 2008 – 200xx

12/18/12 A.N. Villano ‐ ASPERA Synergies 6 Diconary (so far)

CDMS: Cryogenic Dark Maer Search

SuperCDMS: Current stage of CDMS experiment and successor to CDMS‐II

CoGeNT: Coherent Germanium Technology

MINOS: Main Injector Neutrino Oscillaon Search

12/18/12 A.N. Villano ‐ ASPERA Synergies 7 Radiogenic/Cosmogenic

There are two broad categories of background for underground low background experiments

Radiogenic: • contaminants from various chains • can produce gammas or neutrons • mitigated by screening efforts

12/18/12 A.N. Villano ‐ ASPERA Synergies 8 Radiogenic/Cosmogenic

There are two broad categories of background for underground low background experiments

Cosmogenic: • muons very penetrating • can produce neutrons in underground environments • can produce radioactive secondaries which remain as contaminants • mitigated by simulation and measurement efforts

12/18/12 A.N. Villano ‐ ASPERA Synergies 9 “Acve” Cavern Environment

• (above) veto shield from Soudan 2 detector • currently works and reads out events with global ∼µs stamp • can support an “LBCF” with correlated tracking/timing

12/18/12 A.N. Villano ‐ ASPERA Synergies 10 “Acve” Cavern Environment

• (above) LBCF scheme for timing correlation • use global ∼µs stamp to correlate NMM or other events to muons • being extended to NMM meter in a generic user-oriented way 12/18/12 A.N. Villano ‐ ASPERA Synergies 11 Novel Detectors – Beta Cage

• (left) schematic of detector • MWPC to detect drift electrons

• (right) prototype at Caltech • collaboration between Syracuse and Caltech • prototype built but not out of radiopure materials • final design to be installed at Soudan perhaps LBCF 12/18/12 A.N. Villano ‐ ASPERA Synergies 12 Screening

• Support screening efforts at Soudan • Use LBCF veto shield in concert with installed detectors • Propose new infrastructure to assist underground low background exp.

12/18/12 A.N. Villano ‐ ASPERA Synergies 13 Screening – Gopher HPGe

• “Gopher” counng staon recently re‐built (2012) by UMN • One layer ancient lead from Lemar Pax • Queue includes SuperCDMS and outside samples

12/18/12 A.N. Villano ‐ ASPERA Synergies 14 Novel Detectors ‐ NMM • UCSB effort to measure high energy neutrons underground • Use Gd loaded water and photomulpliers to detect spallaon products of high energy neutrons on a lead target • Currently running at Soudan (next to CoGeNT) and in posion to take advantage of detailed veto shield informaon • LBCF correlaon successfully tested spring 2012 12/18/12 A.N. Villano ‐ ASPERA Synergies 15 Novel Detectors ‐NMM

12/18/12 A.N. Villano ‐ ASPERA Synergies 16 Diconary (so far) LBCF: Low Background Counng Facility – generic name for screeners or other experiments which benefit from the re‐furbished Soudan 2 veto shield

β-cage: Beta cage, a detector for screening samples with low‐level beta contaminaon using a Mul Wire Proporanal Chamber (MWPC)

NMM: Neutron Mulplicity Meter, a detector to measure spallaon from high energy neutrons entering a target material ‐ lead 12/18/12 A.N. Villano ‐ ASPERA Synergies 17 Industry and Science Support • Copper electroplang (SBIR) iniave – J. Reeves iniave was successful in creang copper, space and infrastructure sll exist at Soudan – Did not flourish into larger scale operaon but interest sll exists

12/18/12 A.N. Villano ‐ ASPERA Synergies 18 Biology – Microbial Studies

• microbial life at Soudan is abundant! • Level 27 is a “microbial galaxy” • Biomass living in underground env. may surpass surface life work of: J. Gralnick, Department of Microbiology BioTechnology Institute, UMN 12/18/12 A.N. Villano ‐ ASPERA Synergies 19 Biology – Microbial Studies • Bacteria have been cultivated from the level 27 brine near each vertical borehole (seep). • All isolates (6/6) were identified as belonging to the genus Marinobacter. • Marinobacter is commonly found in oceans. • Are these bacteria remnants from an ancient ocean?! • Some species are able to oxidize ferrous iron, a metabolism we would predict to be occurring in the iron-rich brine. work of: J. Gralnick, Department of Microbiology BioTechnology Institute, UMN

12/18/12 A.N. Villano ‐ ASPERA Synergies 20 Biology – Microbial Studies • Oxydizing Bacteria • This ancient Banded Iron Formation provides the appropriate redox gradients for life to thrive. • This ecosystem is independent of surface processes. • No photosynthesis input (unlike in marine systems)

• Very little (if any) mixing with surface waters

• If there is life on Mars today, this is what it would probably look like. work of: J. Gralnick, Department of Microbiology BioTechnology Institute, UMN

12/18/12 A.N. Villano ‐ ASPERA Synergies 21 Geology

• Dean Peterson survey during Soudan early days • (left) showing iron formations around the mine workings (purple) and laboratory structure (yellow)

12/18/12 A.N. Villano ‐ ASPERA Synergies 22 Geology

• (above) ore bodies in and around mine/laboratory • iron in the region appears to be pre-cambrian • http://www.d.umn.edu/prc/  center founded on these studies 12/18/12 A.N. Villano ‐ ASPERA Synergies 23 Lunar and Planetary Science XXXVIII (2007) 1758.pdf

!"#$%&'()*$+,*#-$+,**#%&!).$$)$"/(0&1"#+,1)2$)*)2&3$4&0$0,+%!&*#$()+%$&*$ !"#$+)0!,)*$%'04)1#5!!"#!$%&'()!*&+,%)-+./!0.#1/!23455!$#!*&+,%)-+.1/!*)-.(!"#!6%)74)1/!25+'+)!8#!9()5%1/! 9+)+&4:+!0#!;4754)!*#!?.%&)(3@A#!!1B)('#!4=!8())+745%!CD+:5#!4=!?+4&4E>!F!?+4:G>7(37/!A1H!9(&&7IJ.>!D.#! 2"/!8())+%:4&(7/!8K!LLMLLN!!%&+,%HH1OJP)#+-J/!%&+,%H1QOJP)#+-J/!G%)71RMROJP)#+-J/!:()5HHAMOJP)#+-J!S/! K+T!8+,(34!U+3G!C"%.5G!F!")'(.4)P+)5%&!23(+)3+7!D+:5#/!K8!V)75(5J5+!4=!8()()E!F!U+3G)4&4E>/!WH1!X+.4>!9&%3+/! 2434..4/!K8!WQWH1N!:I4754)O)P5#+-J!S/!!AB)('#!4=!8())+745%#!CD+:5#!4=!8(3.4I(4&4E>/!;(4U+3G)4&4E>!V)75(5J5+/! ALY!?4.5)+.!X%I4.%54.>/!1MQR!?4.5)+.!*'+#/!25#!9%J&/!8K!LL1HWN!E.%&)(3@OJP)#+-J!S# Hydrogeology ,6789:;<7=96.! !"'(-+)3+!4=!.J))()E/!&(ZJ(-!T%5+.! 74&J5(4)7!4)!8%.7!G%7!I+34P+!75+%-(&>!P4.+!-+5%(&+-! %)-!34P:+&&()E!7()3+!5G+!=(.75!=&>I>!P(77(4)!:G4547!()! • (left) picture of water flows on 5G+!1RYH7#! !*&5G4JEG!P%)>!4=!5G+!T%5+.[.+&%5+-!=+%[ 5J.+7!%.+!%)3(+)5/!8%.7!\.I(5+.!$%P+.%!C8\2S!G%'+! Martian surface -43JP+)5!E+4&4E(3%&&>!.+3+)5!EJ&&(+7!%5!P%)>!:&%3+7!4)! 5G+!8%.5(%)!7J.=%3+!]1^#!_+3+)5&>/!.+:+%5+-!8\2!:G4[ • active flowing water on the 547!]<^!-43JP+)5!+'(-+)3+!4=!&(ZJ(-!T%5+.!=&4T7!`7()3+! *JEJ75!1RRRa#!!D%5%!=.4P!5G+!8%.7!",:&4.%5(4)!_4'+.7! Martian surface probably ]A^!-43JP+)5!%!'%.(+5>!4=!7+-(P+)5%.>!P()+.%&!-+:47(57! ()3&J-()E!%IJ)-%)5!b%.47(5+# !*35('+&>!=&4T()E!T%5+.!%5!8%.5(%)!7J.=%3+!5+P:+.%[ requires high dissolved salt 5J.+!%)-!:.+77J.+!:.4I%I&>!.+ZJ(.+7!G(EG!34)3+)5.%5(4)7! concentrations 4=!-(774&'+-!7%&57#! !"J5+35(3!$%$&< !I.()+7/!7J3G!%7!5G+! I.()+7!()!5G+!D4)!0J%)!94)-/!*)5%.35(3%!G%'+!I++)!:.4[ :47+-!:477(I&+!%)%&4E7!=4.!8%.5()!7JI7J.=%3+!T%5+.7! • circled at left is possibly a ]M^# ! !2J3G! I.()+7!%.+!JI(ZJ(54J7!()!5+..+75.(%&!7G(+&-! .43@7!]L^!%)-!7++P!54!I+!4)+!+)-!:4()5!()!5G+!E+43G+P[ “rimstone dam” feature (3%&!+'4&J5(4)!4=!3.J75%&!I.()+7#!! 0=>?796@$(A>?$96$+A8?.! ! c(E#1!7G4T7! %!7JI[ • brines similar to those being =.%P+!=.4P!%!8\2!G(EG!.+74&J5(4)!(P%E+!5G%5!7G4T7! EJ&&(+7!()!%!3.%5+.!T%&&!()!5G+!74J5G+.)!G+P(7:G+.+!4=! studied at Soudan could be 8%.7#!!*5!5G+!I%7+!4=!%!.+E4&(5G!7&4:+!I+&4T!5G+!EJ&&(+7! 5G+.+!(7!%!7()J4J7!=+%5J.+!5G%5!7J..4J)-7!%!7P445G!%.+%! responsible for this mineral 4)!(57!J:7&4:+!7(-+!C3(.3&+-!()!.+-!()!c(E#!1S#!!UG+!T4.@[ ()E!G>:45G+7(7!4=!5G(7!%I75.%35!(7!5G%5!5G+!3(.3&+-!=+%5J.+! 4=F5$G5$$*!.(P754)+!-%P!C3(.3&+-!()!.+-S!%7743(%5+-!T(5G! deposit feature (7!%!.(P754)+!-%P!TG(3G!T%7!:.4-J3+-!I>!5G+!:4)-()E! EJ&&(+7!()!3.%5+.!%5!AR#Hg2/!1YY#1gh!4)!8%.7!]Y^#!!UG+! 4=!%!&(ZJ(-!4)!5G+!8%.5(%)!7J.=%3+#!!2(P(&%.!=+%5J.+7!3%)! &4)E!-(P+)7(4)!4=!5G+!-%P!(7!%I4J5!MHHP# I+!7++)!()!7+'+.%&!4=!5G+!EJ&&(+7!(P%E+7# _(P754)+!-%P7!433J.!()!%!'%.(+5>!4=!7J.=%3+!%)-! work of: C. Alexander, Department of Earth Scienes, UMN Ce1HfS!4)!%)!+ZJ('%&+)5!I%7(7/!T(5G!$&!%7!5G+!-4P()%)5! 7JI7J.=%3+ ! +)'(.4)P+)57 ! 4) ! "%.5G# ! ! _(P754)+ ! -%P7! %)(4)#!!UG+!$&d;.!.%5(4!4=!1WH!()-(3%5+7!5G+7+!%.+!.+7(-[ =4.P!'(%!%)!+&+E%)5!7+&=[&+'+&()E!P+3G%)(7P!()!TG(3G! 12/18/12 A.N. Villano ‐ ASPERA Synergies 24 J%&!74&J5(4)7#! !UG+!74&J5(4)7!%.+!%)4,(3!%)-!34)5%()! 5G+!:4)-+-!T%5+.!-+:47(57!P%5+.(%&!%7!(5!5G()7!=&4T()E! 1LH!::P!c+!%)-!1H!::P!8)#!! 4'+.!5G+!&4T!:4()5!()!5G+!:44&7!+-E+!]Q^#!!UG+!&4T!:4()5! hG+)!5G+!7++:!T%5+.7!.+%3G!5G+!4,>E+)%5+-!P()+! IJ(&-7!J:T%.-!J)5(&!(5!(7!)4!&4)E+.!5G+!&4T+75!4J5&+5!%5! -.(=5!5J))+&7!5G+!74&JI&+!=+..4J7!c+!I+E()7!54!4,(-(i+! TG(3G!:4()5!5G+!=&4T!C%)-!-+:47(5(4)S!P4'+7!54!5G+! :.+3(:(5%5()E! %!T(-+! '%.(+5>!4=! I.(EG5&>! 34&4.+- ! 7+3[ )+T! &4T! :4()5# ! ! U+..+75.(%& ! .(P754)+ ! -%P7 ! =4.P ! %5! 4)-%.>!-+:47(57#!!UG+7+!-+:47(57!.+:.+7+)5!5G+!()5+.=%3+! 73%&+7!=.4P!P(&&(P+5+.7!54!@(&4P+5+.7!%)-!5G+!&%.E+75! I+5T++)!%)4,(3!%)-!4,(3!T%5+.7#! !c(E#!!4=!5G+!-+:47(57! 24J-%)!V.4)!8()+! !%.+!$%[K%[8Ed$&!74&J5(4)7!%I4J5! (7!3J..+)5&>!I+()E!-+5+.P()+-!IJ5!()(5(%&!j_D!%)-!2"8! 5T(3+!%7!7%&5>!%7!7+%!T%5+.!]W^!7(P(&%.!54!!I.()+7!T(-+&>! T4.@!G%7!(-+)5(=(+-!%IJ)-%)5!b%.47(5+!()!7+'+.%&!4=!5G+! -(75.(IJ5+-!()!4&-!5+..+75.(%&!34)5()+)5%&!.43@7!]L^#!!UG+! -+:47(57# ! ! 0%.47(5+ ! (7 ! I+()E ! -+:47(5+- ! =.4P ! T%5+.7 P%b4.!!3%5(4)7!!%.+!!$%!!CeYHfS/!!!K%!!CeAHfS!!%)-!!8E Geology with Physics Impact

• (left) shows simulated muons which can be detected in minos • the energy spectrum will be distorted by the iron structures • detailed knowledge of these structure help all physics experiments to more accurately model the incoming cosmic rays

12/18/12 A.N. Villano ‐ ASPERA Synergies 25 Outreach

• Mine tours conducted through spring/ summer • Good location for outreach being located on the site of a state park

12/18/12 A.N. Villano ‐ ASPERA Synergies 26 The Future – MINOS+

• (above) MINOS detector upgraded with new electronics etc. • start running in 2013 simultaneous with NOVA • off oscillation maximum for Numi energy, exotic theories can be tested

12/18/12 A.N. Villano ‐ ASPERA Synergies 27 The (Possible) Future – DIANA

12/18/12 A.N. Villano ‐ ASPERA Synergies 28 Summary • Soudan mine has a wide variety of acvies which are going on • The mine is not acve so it is well suited to sensive detectors and equipment • There is lile overhead in geng started with studies being operated by UMN • There are sll many open opportunies for both physics and other general scienfic research

12/18/12 A.N. Villano ‐ ASPERA Synergies 29