N9 1 - 3 3;0 -4F

Total Page:16

File Type:pdf, Size:1020Kb

N9 1 - 3 3;0 -4F PARTICLE ASTROPHYSICS VII- 1 PARTICLE ASTROPHYSICS N9 1 - 3 3;0 -4f EXECUTIVE SUMMARY In the last few years, particle astrophysics has emerged as a new field at the frontier between high energy astrophysics, cosmology, and particle physics. A spectacular achievement of this new field in the last decade has been the establishment of neutrino astronomy with the detection of solar neutrinos by two independent experiments and the spectacular observation of the neutrinos from the supernova SN1987A. In addition, the field has produced tantalizing hints of new physics beyond the standard models of astrophysics and particle physics, generating enthusiastic attempts to confirm these potential effects. The next decade promises to be even more productive. Extrapolating within the present conceptual framework, we expect the next ten years to bring fascinating results on the following issues: • The elucidation of the nature of dark matter, especially if it is made of nonbaryonic particles. • The explanation of the solar neutrino puzzle and if a supernova explodes in our own galaxy, a detailed account of the explosion mechanism by the analysis of the emerging neutrinos. • The possible confirmation of the existence of point sources of energetic particles leading to the production of gamma rays, neutrinos and maybe new particles at energies as high as 1014eV. • The understanding of the origin of cosmic rays, including the physical processes responsible for their synthesis and acceleration on a wide variety of scales. It is even more likely that as yet unsuspected phenomena will be discovered, that entirely new concepts will be tested and that the deep link between particle physics, the early universe and the high energy astrophysical processes will be extended beyond what we can imagine today! In contrast with more mature observational fields, particle astrophysics is likely in the next decade to still be based on the succession of experiments which will increasingly sharpen their scientific focus. We see, therefore, the evolution of the field as governed by a number of decision points occurring in the next decade when the information from previous experiments or technological development becomes available: • The highest priority at the moment is the rapid implementation of the presently approved program of observations on the ground and in space. Within this program, existing neutrino detectors should be coordinated and maintained to provide an efficient supernova watch. • The technology is now available to tackle the question of the extragalactic origin of cosmic rays with the study of their spectrum at 1020 eV. We recommend that the high resolution Fly's Eye be supported, contingent on a favorable detailed technical review. • We foresee important funding decisions to be made in a few years when the required information will be available. If the feasibility of the cryogenic technologies can be demonstrated, it is clear that a full scale search for nonbaryonic dark matter will have very high priority. If the large extensive air shower detectors currently being deployed confirm the claims for localized gamma ray sources above 1014 eV, understanding these unsuspected acceleration mechanisms (and the new particle physics if the claimed anomalous muon content is substantiated) would require more powerful detectors. The results of current solar neutrino detectors may steer the field into new observational directions. Finally, if the early promise of gamma ray astronomy at 1012 eV is fulfilled, then larger installations will surely be required. The preparation for these decisions appearing on the horizon demands a strong development of new detection techniques: we emphasize in particular the cryogenic particle detectors for dark matter searches, the new solar neutrino schemes, and the test of the water Cerenkov technique for the detection of extensive air showers. Such a complex and fundamentally muitidisciplinary enterprise requires a strong theoretical activity and a variety of coordination mechanisms. Our main recommendation here is the establishment of a particle astrophysics VII-2 ASTRONOMY AND ASTROPHYSICS PANEL REPORT Advisory Panel which could advise the federal agencies involved in particle astrophysics (NSF, DOE and NASA) on the relative scientific priorities and help them set up long term policies. The emergence of a new scientific field Particle detection techniques have been essential to the development of high energy astrophysics since the first cosmic ray investigations in the early years of this century. Their role has been greatly expanded during the past decade as a variety of large experiments have begun to address fundamental astrophysical questions. Two of the most recent and important advances in astronomy have been made by the direct detection of neutrinos. Two independent experiments measured the solar neutrino flux using totally different techniques, and neutrinos from the supernova 1987A have been directly detected by experiments designed to observe proton decay. Moreover, observation of the electromagnetic spectrum from astrophysical objects has been extended above 1011 eV using ground based Cerenkov detectors. Evidence obtained with air shower arrays suggests that gamma radiation in excess of 1014 eV may also have been observed from astrophysical objects. Cosmic rays have been detected up to 1020 eV but their nature and origin at these energies remains a mystery, as does the means of their acceleration. In parallel, progress in the understanding of particle physics has suggested that the missing matter in the universe may consist of as yet undiscovered elementary particles, which are relics of the very earliest phases of the formation of the universe. It also appears that quantum fluctuations and topological singularities generated in phase transitions occurring at very high temperature in the early universe could have played a fundamental role in the formation of large scale structure. In addition, it is now well understood how the properties of neutrinos could be responsible for the solar neutrino puzzle, and the powerful acceleration mechanisms evidenced by the highest energy cosmic rays may require new particle physics. The discoveries and activities described above have been mostly carried out by an unconventional breed of "astronomers" whose backgrounds have been in particle or nuclear physics. The nature of the research ranges from solid experiments with well defined systematic goals to investigations which test speculative ideas or follow on experimental hints. Therefore, such a field is a vital and exciting one, with new ideas, new practitioners, and the certainty of scientific progress. It may well be that the cosmos is providing us with the first evidences for physics beyond the standard models of astrophysics and particle physics. In this new field, which we may call particle astrophysics, we can distinguish four interrelated areas dealing respectively with cosmology and particle physics, stellar physics and particles, high energy gamma and neutrino astrophysics (> 1012 eV) and cosmic ray astrophysics. We review first the essential scientific questions being tackled and the present experimental program, before turning to priorities and institutional questions. Cosmology and Particle Physics The physics of the early universe is intimately related to particle physics at the very highest energies and it is not possible to distinguish them in the quest for the answer to the fundamental questions of cosmology: What is the nature of the ubiquitous dark matter? What is the origin of the predominance of matter over antimatter? What is the explanation for the smoothness, flatness, and old age of the universe? What is the origin of the primeval inhomogeneities that triggered the formation of structure and eventually galaxies in the universe? Conversely, the cosmological observations provide essential constraints in the construction of unified theories of particle interactions and may be the only source of information on physics at the very highest energies (up to the Planck scale - 1019 GeV). Physics at these energies is difficult to probe in terrestrial laboratories and so, at the same time the early universe provides a natural laboratory in which physics at the most fundamental level can be studied. Particle Physics and the Early Universe The past decade has seen the consolidation of two standard models: the SU(3)xSU(2)xU(1) gauge theory of particle interactions and the Hot Big Bang model. The former provides a fundamental theory of the elementary particles and their interactions at distances down to 10 -17 cm (energies up to 103 GeV), while the latter provides an accurate accounting of the history of the Universe from about 10-2 sec after the origin of the universe. Encouraged by these impressive successes, particle physicists and cosmologists have begun to extrapolate to earlier times and attempted to answer the fundamental questions outlined above. The origin of the matter-antimatter asymmetry seems PARTICLE ASTROPHYSICS VII-3 to involve forces that violate both CP and baryon number conservation. At very early times (10 -34 sec?) phase transitions may have played an important role. For instance, inflation provides a very attractive explanation for the flatness and old age of the universe and of the primeval density inhomogeneities. In addition, many theories that go beyond the particle physics standard model, such as supersymmetry, predict the existence of stable relic elementary particles that are left
Recommended publications
  • New Projects in Underground Physics
    NEW PROJECTS IN UNDERGROUND PHYSICS MAURY GOODMAN High Energy Physics Division Argonne National Laboratory Argonne IL 60439 E-mail: [email protected] ABSTRACT A large fraction of neutrino research is taking place in facilities underground. In this paper, I review the underground facilities for neutrino research. Then I discuss ideas for future reactor experiments being considered to measure θ13 and the UNO proton decay project. 1. Introduction Large numbers of particle physicists first went underground in the early 1980’s to search for nucleon decay. Atmospheric neutrinos were a background to those experiments, but the study of atmospheric neutrinos has spearheaded tremendous progress in our understanding of the neutrino. Since neutrino cross sections, and hence event rates are fairly small, and backgrounds from cosmic rays often need to be minimized to measure a signal, many more other neutrino experiments are found underground. This includes experiments to measure solar ν’s, atmospheric ν’s, reactor ν’s, accelerator ν’s and neutrinoless double beta decay. In the last few years we have seen remarkable progress in understanding the neu- trino. Compelling evidence for the existence of neutrino mixing and oscillations has been presented by Super-Kamiokande1) in 1998, based on the flavor ratio and zenith angle distribution of atmospheric neutrinos. That interpretation is supported by anal- 2) arXiv:hep-ex/0307017v1 8 Jul 2003 yses of similar data from IMB, Kamiokande, Soudan 2 and MACRO. And 2002 was a miracle year for neutrinos, with the results from SNO3) and KamLAND4) solving the long standing solar neutrino puzzle and providing evidence for neutrino oscilla- tions using both neutrinos from the sun and neutrinos from nuclear reactors.
    [Show full text]
  • Experimental Froniers in Nucleon Decay
    Experimental Fron/ers in Nucleon Decay Ed Kearns, Boston University froner Hyper-K 10 35 LAr20 LAr10 10 34 Super-K 10 33 Lifetime Sensitivity (90% CL) IMB 10 32 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 Year ∼ 0.5 Mt yr exposure Star/ng /me? Guess 1 decade from now. by Super-K before next Adjust star/ng /me as you wish. generaon experiments 2 What moves us towards the froners? v Connue exposure v Improve analysis Super-K v Search in new channels v Next generaon experiments • Detector R&D NNN • Experiment proposals Hyper-Kamiokande 560 kton water cherenkov 99K PMTs (20% coverage) LBNE 10/20 kton LAr TPC surface/underground? GLACIER/LBNO 20 kton LAr TPC 2-phase LENA 51 kton liquid scin/llator 30,000 PMTs 3 How to improve exis/ng analyses v Sensi/vity is based on: v Achieve: higher efficiency, lower background rate v Also important: improve accuracy of model (signal and/or BG) (which may increase or reduce sensi/vity) v Also: reduce systemac uncertainty v None of this is easy – gains will be small and hard fought v Increased exposure – gains are now minimal 4 Super-Kamiokande I Time(ns) < 952 952- 962 962- 972 972- 982 982- 992 992-1002 1002-1012 Simple signature: back-to-back 1012-1022 1022-1032 1032-1042 reconstruc/on of EM showers. 1042-1052 1052-1062 1062-1072 1072-1082 1082-1092 Efficiency ∼45% dominated by >1092 0 670 nuclear absorp/on of π 536 402 268 Low background ∼0.2 events/100 ktyr in SK 134 0 0 500 1000 1500 2000 Times (ns) Relavely insensi/ve to PMT density.
    [Show full text]
  • U·M·I University Microfilms International a Bell & Howell Lntormanon Company 300 North Zeeb Road
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copysubmitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverselyaffect reproduction. In the unlikely.event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrightmaterial had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. U·M·I University Microfilms International A Bell & Howell lntormanon Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313/761-4700 800/521-0600 Order Number 9416065 A treatise on high energy muons in the 1MB detector McGrath, Gary G., Ph.D. University of Hawaii, 1993 V·M·I 300N.
    [Show full text]
  • INO/ICAL/PHY/NOTE/2015-01 Arxiv:1505.07380 [Physics.Ins-Det]
    INO/ICAL/PHY/NOTE/2015-01 ArXiv:1505.07380 [physics.ins-det] Pramana - J Phys (2017) 88 : 79 doi:10.1007/s12043-017-1373-4 Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO) The ICAL Collaboration arXiv:1505.07380v2 [physics.ins-det] 9 May 2017 Physics Potential of ICAL at INO [The ICAL Collaboration] Shakeel Ahmed, M. Sajjad Athar, Rashid Hasan, Mohammad Salim, S. K. Singh Aligarh Muslim University, Aligarh 202001, India S. S. R. Inbanathan The American College, Madurai 625002, India Venktesh Singh, V. S. Subrahmanyam Banaras Hindu University, Varanasi 221005, India Shiba Prasad BeheraHB, Vinay B. Chandratre, Nitali DashHB, Vivek M. DatarVD, V. K. S. KashyapHB, Ajit K. Mohanty, Lalit M. Pant Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India Animesh ChatterjeeAC;HB, Sandhya Choubey, Raj Gandhi, Anushree GhoshAG;HB, Deepak TiwariHB Harish Chandra Research Institute, Jhunsi, Allahabad 211019, India Ali AjmiHB, S. Uma Sankar Indian Institute of Technology Bombay, Powai, Mumbai 400076, India Prafulla Behera, Aleena Chacko, Sadiq Jafer, James Libby, K. RaveendrababuHB, K. R. Rebin Indian Institute of Technology Madras, Chennai 600036, India D. Indumathi, K. MeghnaHB, S. M. LakshmiHB, M. V. N. Murthy, Sumanta PalSP;HB, G. RajasekaranGR, Nita Sinha Institute of Mathematical Sciences, Taramani, Chennai 600113, India Sanjib Kumar Agarwalla, Amina KhatunHB Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India Poonam Mehta Jawaharlal Nehru University, New Delhi 110067, India Vipin Bhatnagar, R. Kanishka, A. Kumar, J. S. Shahi, J. B. Singh Panjab University, Chandigarh 160014, India Monojit GhoshMG, Pomita GhoshalPG, Srubabati Goswami, Chandan GuptaHB, Sushant RautSR Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India Sudeb Bhattacharya, Suvendu Bose, Ambar Ghosal, Abhik JashHB, Kamalesh Kar, Debasish Majumdar, Nayana Majumdar, Supratik Mukhopadhyay, Satyajit Saha Saha Institute of Nuclear Physics, Bidhannagar, Kolkata 700064, India B.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE a Search for Proton Decay Via P → Μ +K0 in Super Kamiokande I DISSERTATION Submitted in Part
    UNIVERSITY OF CALIFORNIA, IRVINE A search for proton decay via p → μ+K0 in Super Kamiokande I DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Christopher Regis Dissertation Committee: Professor David Casper, Chair Professor Hank Sobel Professor Jonas Schultz 2011 c 2011 Christopher Regis TABLE OF CONTENTS Page List Of Figures vi List Of Tables xii Acknowledgments xiv Curriculum Vitae xv Abstract Of The Dissertation xvi 1 Introduction 1 1.1TheoreticalMotivation.......................... 1 1.1.1 ConservationandSymmetries.................. 2 1.1.2 StandardModel.......................... 3 1.1.3 GrandUnifiedTheories...................... 5 1.2 Past Experimental Measurements of p → μ+K0 ............ 9 1.2.1 Soudan2 ............................. 9 1.2.2 IrvineMichiganBrookhaven(IMB)............... 9 1.2.3 Kamiokande............................ 10 1.2.4 SuperKamiokande........................ 10 1.3OverviewofExperimentalMethod................... 10 2 Detector 14 2.1CherenkovRadiation........................... 14 2.2SuperKamiokandeDetector....................... 16 2.3PhotomultiplierTube........................... 18 2.4Electronics&DataAcquisition..................... 18 2.4.1 InnerDetector........................... 18 2.4.2 OuterDetector.......................... 21 2.4.3 TriggerSystem.......................... 21 2.5WaterPurificationSystem........................ 23 2.6Calibration................................ 24 2.6.1 TimingCalibration........................ 24 2.6.2
    [Show full text]
  • Inclusion of GENIE As Neutrino Event Generator for INO ICAL
    Pramana – J. Phys. (2017) 88: 55 c Indian Academy of Sciences DOI 10.1007/s12043-016-1359-7 Inclusion of GENIE as neutrino event generator for INO ICAL ALI AJMI1,∗ and GOBINDA MAJUMDER2 1Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India 2Tata Institute of Fundamental Research, Mumbai 400 005, India ∗Corresponding author. E-mail: [email protected] MS received 23 May 2016; revised 17 August 2016; accepted 5 October 2016; published online 22 February 2017 Abstract. The iron calorimeter (ICAL) detector is the proposed underground neutrino-physics experi- m2 ment in the INO cavern. Its main goal is the determination of sign of 2–3 mass-squared difference, 32 (=m2 − m2) 3 2 in the presence of matter effects, apart from the precise measurement of other neutrino parame- ters. Like all other neutrino experiments, the INO Collaboration is going to interface its main software code with a neutrino event generator. The GENIE software is best suited for the ICAL experiment. But, it requires a few modifications before being incorporated in ICAL simulation to have better representation of the neutrino flux and to be more user friendly to the INO user. This paper reports all these modifications. Keywords. Neutrino; India-based neutrino observatory; GENIE. PACS No. 13.15.+g 1. Introduction the search for any non-standard effect beyond neutrino oscillations. A detailed description of the INO project The India-based neutrino observatory (INO) is the can be found in [1]. Every neutrino experiment has neutrino physics experiment to be built under the to analyse its probabilistic results obtainable from the ◦ ◦ Bodi hills (9 58 N, 77 16 E) in South India, with at real data.
    [Show full text]
  • The Numi Neutrino Beam
    The NuMI neutrino beam The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Adamson, P., K. Anderson, M. Andrews, R. Andrews, I. Anghel, D. Augustine, A. Aurisano, et al. 2016. “The NuMI Neutrino Beam.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 806 (January): 279–306. doi:10.1016/j.nima.2015.08.063. Published Version doi:10.1016/j.nima.2015.08.063 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30781092 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The NuMI Neutrino Beam P. Adamsond, K. Andersond, M. Andrewsd, R. Andrewsd, I. Anghelv,i, D. Augustined, A. Aurisanoc, S. Avvakumovau, D. S. Ayresi, B. Ballerd, B. Barishg, G. Barrak, W. L. Barrettbf, R. H. Bernsteind, J. Biggsd, M. Bishaim, A. Blakeb, V. Boceand, G. J. Bockd, D. J. Boehnleind, D. Bogertd, K. Bourklandd, S. V. Caoay, C. M. Castromontebc, S. Childressd, B. C. Choudharyd, J. A. B. Coelhoba,bb, J. H. Cobbak, L. Corwinas,w, D. Craned, J. P. Cravensay, D. Cronin-Hennessyaf, R. J. Ducard,bi, J. K. de Jongak, A. V. Devanbg, N. E. Devenishaw, M. V. Diwanm, A. R. Erwinbh,bi, C. O. Escobarbb, J. J. Evansad, E. Falkaw, G. J. Feldmanr, T. H. Fieldsi, R. Fordd, M.
    [Show full text]
  • History of Long-Baseline Accelerator Neutrino Experiments∗
    History of Long-Baseline Accelerator Neutrino Experiments∗ Gary J. Feldman Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, United States I will discuss the six previous and present long-baseline neutrino experiments: two first- generation general experiments, K2K and MINOS, two specialized experiments, OPERA and ICARUS, and two second-generation general experiments, T2K and NOνA. The motivations for and goals of each experiment, the reasons for the choices that each experiment made, and the outcomes will be discussed. 1 Introduction My assignment in this conference is to discuss the history of the six past and present long- baseline neutrino experiments. Both Japan and the United States have hosted first- and second- generation general experiments, K2K and T2K in Japan and MINOS and NOνA in the United States. Europe hosted two more-specialized experiments, OPERA and ICARUS. Since the only possible reason to locate a detector hundreds of kilometers from the neutrino beam target is to study neutrino oscillations, the discussion will be limited to that topic, although each of these experiments investigated other topics. Also due to the time limitation, with one exception, I will not discuss sterile neutrino searches. These experiment have not found any evidence for sterile neutrinos to date.1;2;3;4;5;6;7 The Japanese and American hosted experiments have used the comparison between a near and far de- tector to measure the effects of oscillations. This is an essential method of reducing systematic uncertain- ties, since uncertainties due flux, cross sections, and efficiencies will mostly cancel. The American experi- ments used functionally equivalent near detectors and the Japanese experiments used detectors that were func- tionally equivalent, fine-grained, or both.
    [Show full text]
  • Search for GUT Monopoles at Super-Kamiokande
    PROCEEDINGS OF THE 31st ICRC, ŁOD´ Z´ 2009 1 Search for GUT monopoles at Super-Kamiokande Koh Ueno∗ for the Super-Kamiokande collaboration ∗Kamioka Observatory, ICRR, University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, Japan Abstract. GUT monopoles captured by the Sun’s process above subsequently decay into positive pions, 0 + + gravitation are expected to catalyze proton decays (ρ ,ω,η,K , · · ·) → π , νe, νµ and ν¯µ are produced via the Callan-Rubakov process. In this scenario, pro- as described below, tons, which initially decay into pions, will ultimately + + π → µ + νµ (2) produce νe, νµ and ν¯µ. After going through neutrino + + oscillation, all neutrino species appear when they µ → e + νe +¯νµ (3) arrive at the Earth, and can be detected by a 50,000 ton water Cherenkov detector, Super-Kamiokande (SK). A search for neutrinos produced through such a process has been carried out with SK and is expected 0.5 to give the cross section and velocity dependent limit 0.45 −23 −2 −1 on the monopole flux, F < 1 × 10 cm s 0.4 sr−1 for β = 10−3 and σ = 1 mb at 90%C.L. This is one order of magnitude more stringent a limit 0.35 than the previous result, which was obtained by the 0.3 Kamiokande experiment. 0.25 Keywords: GUT monopole, neutrino, water 0.2 ν ν± e h Cherenkov detector Arbitrary Unit 0.15 ν h I. INTRODUCTION 0.1 Grand Unified Theories (GUT) predict superheavy 0.05 ν± e monopoles (GUT monopoles) produced in the very 0 early universe.
    [Show full text]
  • Discovery of Atmospheric Neutrino Oscillations
    Nobel Lecture Dec 8, 2015 Takaaki Kajita Institute for Cosmic Ray Research, The Univ. of Tokyo Atmospheric Neutrino Oscillations 1 Outline • Introduction: Kamiokande - the starting point - • Atmospheric neutrino deficit • Discovery of neutrino oscillations • Recent results and the future • Summary • Acknowledgements Atmospheric Neutrino Oscillations 2 Introduction: Kamiokande - the starting point - Atmospheric Neutrino Oscillations 3 Kamioka Nucleon Decay Experiment (Kamiokande) In the late 1970’s, new theories that unify Strong, Weak and Electromagnetic forces were proposed. These theories predicted that protons and neutrons (i.e., nucleons) should decay with the lifetime of about 1028 to 1032 years. Several proton decay experiments began in the early 1980’s. One of them was the Kamiokande experiment. Kamiokande (1000 ton Detector fiducial wall volume) Cherenkov light Photo detectors Charged particle Atmospheric Neutrino Oscillations 4 Kamiokande construction team (Spring 1983) M. Takita TK A. Suzuki T.Suda M. Nakahata K. Arisaka M. Koshiba Y. Totsuka T. Kifune Atmospheric Neutrino Oscillations 5 What are neutrinos? • Neutrinos; • are fundamental particles like electrons and quarks, • have no electric charge, • have 3 types (flavors), namely electron-neutrinos (νe), muon-neutrinos (νµ) and tau-neutrinos (ντ), • are produced in various places, such as the Earth’s atmosphere, the center of the Sun, …. • can easily penetrate through the Earth, the Sun… • can, however, interact with matter very rarely. A νµ produces a muon. A νe produces
    [Show full text]
  • Prospects for Neutrino Oscillation Physics at HK/T2HK
    INR, Moscow, June 25, 2019 The Hyper-K Project Takaaki Kajita ICRR, Univ. of Tokyo outline • Introduction • Hyper-K • Neutrino oscillation studies with the J-PARC beam • Neutrino oscillation studies with atmospheric and solar neutrinos • Other physics: supernova neutrinos proton decays • Status of Hyper-K • Summary In many cases, the reference that is not explicitly shown is: Hyper-Kamiokande design report, arXiv:0805.04163v1 2 Introduction 3 Strong academic relation with Soviet/Russia • The condition that matter in the Universe survived was invented by Andrei Sakharov. • Moreover neutrino experiments rely on the theory (of neutrino oscillations) invented by Bruno Pontecorvo. • Principle of Kamiokande/Super- K/Hyper-K detectors is to detect Cherenkov radiation which was discovered & formulated by Cherenkov, Frank, and Tamm. • And more … 4 Discovery of neutrino oscillations Super-K, PRL 81 (1998) 1562 SNO PRL 89 (2002) 011301 Atmospheric neutrino oscillations Solar neutrino oscillations SNO PRC 72, 055502 (2005) These discoveries opened a window to study the physics beyond the Standard Model of particle physics! 5 Status of neutrino oscillation studies νµ ντ oscillations (∆m23, θ23) Atmospheric: Super-K, Soudan-2, MACRO IceCube/Deepcore, … LBL: K2K, MINOS, OPERA, T2K, NOvA, … νe (νµ+ντ) oscillations (∆m12, θ12) Solar: SNO, Super-K, Borexino, … Reactor: KamLAND θ13 experiments LBL: MINOS, T2K, NOvA, … Reactor: Daya Bay, Reno, Double Chooz I. Esteban et al., JHEP 1901 (2019) 106 Basic structure for 3 flavor oscillations has been understood! 6 Agenda for the future neutrino measurements Neutrino mass hierarchy? CP violation? P(να →ν β ) ≠ P(να →ν β ) ? Baryon asymmetry of the Universe? Are neutrinos Majorana particles? Neutrinoless (taken from R.
    [Show full text]
  • DUSEL Theory White Paper
    SLAC-PUB-14734 DUSEL Theory White Paper S. Raby1, T. Walker1,2,3, K.S. Babu4, H. Baer5, A.B. Balantekin6, V. Barger6, Z. Berezhiani7, A. de Gouvea8, R. Dermisek9, A. Dolgov10, P. Fileviez Perez6, G. Gabadadze11, A. Gal12, P. Gondolo13, W. Haxton14, Y. Kamyshkov15, B. Kayser16, E. Kearns17, B. Kopeliovich18, K. Lande19, D. Marfatia20, R.N. Mohapatra21, P. Nath22, Y. Nomura23, K.A. Olive24, J. Pati25, S. Profumo26, R. Shrock27, Z. Tavartkiladze28, K. Whisnant29, L. Wolfenstein30 1Department of Physics, The Ohio State University, 2Department of Astronomy, The Ohio State University, 3Center for Cosmology and AstroParticle Physics, The Ohio State University, 4Department of Physics, Oklahoma State University, 5Department of Physics, Florida State University, 6Department of Physics, The University of Wisconsin Madison, 7Gran Sasso Laboratory, Italy, 8Department of Physics and Astronomy, Northwestern University, 9Institute for Advanced Study, Princeton University, 10ITEP, Moscow and Ferrara University, Italy, 11New York University, NY, 12Hebrew University, Israel, 13 Department of Physics, University of Utah, 14Department of Physics, University of Washington, Seattle, 18Department of Physics and Astronomy, The University of Tennessee, Knoxville, 16Theory Group, Fermi National Accelerator Laboratory, 17Department of Physics, Boston University, 18Santa Maria University, Chile, 19Department of Physics and Astronomy, University of Pennsylvania, 20Department of Physics and Astronomy, University of Kansas, 21Department of Physics, University of Maryland, 22Department of Physics, Northeastern University, 23Department of Physics, University of California, Berkeley and Lawrence Berkeley National Laboratory, 24Department of Physics and Astronomy, University of Minnesota, 25Standford Linear Accelerator Center, Standford University, 26Santa Cruz Institute for Particle Physics, Department of Physics, University of California Santa Cruz, 27Department of Physics and Astronomy, Stony Brook University, Work supported in part by US Department of Energy contract DE-AC02-76SF00515.
    [Show full text]