Architectural Engineering in the Curriculum 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Contracting Methods
ALTERNATIVE CONTRACTING METHODS • Conventional Design-Bid-Build • Design/Build • Negotiated General Contractor By Jeff Warner, AIA, LEED AP Principal, ALSC Architects CONVENTIONAL DESIGN-BID-BUILD The most traditional method of delivery of a construction PROS project is where the Architect, after selection by the Client, 1. Costs may be lower due to competition. totally completes the design documents which are then 2. Project design is typically complete prior to start of distributed to General Contractors for bidding. Usually, the construction. low bidder is selected to construct the project and enters 3. Owner receives a single lump sum proposal for the entire into a lump sum type contract agreement directly with the project not subject to cost escalation. Owner. During construction, the Architect typically maintains 4. This approach conforms most directly to public bidding a strong administrative role and is the focal point of most laws. communication on the project between the Contractor and Owner. While proponents of this method of contracting feel that CONS the lowest overall initial costs are obtained through pure 1. If bids exceed budget, the project may require re-design. competitive bidding, an adversarial relationship between 2. Difficult to fast-track or pre-order materials, resulting in principal parties can develop; making the administration of later Owner occupancy. changes more difficult, time consuming and costly. Perhaps 3. The General Contractor may be in an adversarial the biggest potential problem with this approach to a major, relationship with the Owner and Architect/Engineer. complex construction project is that the Owner does not 4. Prices for change order work are typically higher and obtain a firm handle on construction costs until the project has more difficult to control. -
How You Can Become Registered As an Architectural Engineer
PDHonline Course A123 (2 PDH) How You Can Become Registered as an Architectural Engineer Instructor: J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course A123 www.PDHonline.org TABLE OF CONTENTS 1. The Opportunity 3 2. Some Historical Perspective 4 3. This is an Opportunity Not Just for 13 Graduates of Architectural Engineering Programs 4. This is an Opportunity for PEs Already 18 Registered in Other Disciplines 5. The Examination 20 6. Information You Need to Take 26 Into the Exam 7. Career Development 28 © J. Paul Guyer 2009 Page 2 of 29 www.PDHcenter.com PDH Course A123 www.PDHonline.org How You Can Become Registered as an Architectural Engineer J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI COURSE CONTENT 1. THE OPPORTUNITY This is an opportunity for you…. This is a career enhancing opportunity for engineers interested in the design of buildings and related infrastructure. It is an opportunity for you to take a leadership position in the enterprise of designing and constructing buildings. But first, some background…. As we all know, the undertaking of design of buildings and related infrastructure is one of the most multidisciplinary activities in which engineers engage. It requires the skills, efforts and involvement of structural engineers, civil engineers, mechanical engineers, electrical engineers, fire protection engineers and traditionally trained architects. However….there has never existed a “platform” to bring these diverse skills and capabilities together in order to deliver coordinated services to the clients, companies and agencies needing a cost effective and efficient mechanism to deliver the buildings and related infrastructure they need. -
Design/Build and the Structural Engineer
A look at advantages and disadvantages Design/Build and the Structural Engineer By Joseph P. Watson III, P.E. Design/build definitely presents many advantages to participants in a project. First of all, design/build offers the owner a single source of responsibility—one contact point for all questions, conflicts, and revisions. Conflicts, questions, and problems can be addressed more easily because all of the players are on the same team. As an engineer, one of the things I like best about design/build is the problem-solving aspect. When a problem arises at job site, there is no finger-pointing to determine who’s at fault, which, under other project delivery systems, can take months of accusations and digging back through design files— even legal action in some cases—to determine. With design/build, the question is not “Whose fault is it?” but rather “O.K., we’ve got a prob- lem; what do we do to solve it”. Revisions can be handled much more smoothly under design/build, again because all affected parties – architect, engineers, and contractor – The Hillsborough County Sheriff’s Office selected The Haskell Company especially for its design-build experience for the Falkenburg Road Jail in Tampa. The project is a five-building campus, consisting of a 44,000 s.f. reception are on the same team. Preliminary and operations center, two 50,000 s.f. dormitories with 256 beds each, a two-story 71,000 s.f. special management analysis can be worked up easily, housing facility with 256 beds, and an 8,000 s.f. -
Implementation of Building Information Modeling in Architectural Firms in India Aakanksha Luthra Purdue University - Main Campus, [email protected]
Purdue University Purdue e-Pubs College of Technology Directed Projects College of Technology Theses and Projects 3-17-2010 Implementation of Building Information Modeling in Architectural Firms in India Aakanksha Luthra Purdue University - Main Campus, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/techdirproj Luthra, Aakanksha, "Implementation of Building Information Modeling in Architectural Firms in India" (2010). College of Technology Directed Projects. Paper 1. http://docs.lib.purdue.edu/techdirproj/1 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Purdue University West Lafayette, Indiana C o l l e g e o f T e c h n o l o g y Implem entation of Buil ding Information Modeling in Architectural Firms in India in partial fulfillment of the requirements for the Degree of Master of Science in Technology A Directed Project Report By Aakanksha Luthra Committee Member Approval Signature Date Clark A. Cory, Chair _______ ___________________________ ____________ Computer Graphics Technology Robert F. Cox _______ ___________________________ ____________ Building Construction Management Joseph J. Orczyk _______ ___________________________ ____________ Building Construction Management Aakanksha – Directed Project Report 2 Running head: BIM IMPLEMENTATION STRATEGY Implementation of Building Information Modeling in Architectural Firms in India Aakanksha Luthra Purdue University, West Lafayette Aakanksha – Directed Project Report 3 Abstract Building Information Modeling (BIM) is an integrated process of generating and managing a building by exploring a digital model before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been adopted by construction contractors and architects in United States (US) and United Kingdom (UK) to improve the planning and management of construction projects. -
Civil Engineer Vs Architect- Differents in Job, Salary
Civil engineer vs Architect- Differents in Job, Salary If you are a civil engineer or an architectural engineer then I think I need not describe about Civil engineer vs Architect to you. Right?. You should already have some knowledge about them. Don’t you? Not to worry even you don’t know, I am here to explain it to you. But, if you are choosing to be graduate among civil engineering and architectural engineering, then you are at the right place to know “Civil engineer vs Architect” In any construction work or creation of structure like a bridge, building, airport, etc there require good knowledge and understanding of civil and architecture engineers. The skill of both professions is most required for the aesthetic and stable structure to be made. If the structure is attractive in look but not safe for landing or using, then there is no point in constructing a structure or if the structure is safe but not well manage for efficient work then also there is no point in constructing the structure. So, in short, you can understand the work of an architectural engineer is to manage and give an aesthetic look to the structure and the work of a civil engineer is to analyze and make a safe structure. However, there are some considerable differences between Civil engineer vs Architect. Let us discuss this. Civil engineer vs Architect S.N Architecture Engineer Civil Engineer Architecture engineers initialize the construction through their design. The After that the remaining designing of structure for 1 work for civil engineers aesthetic purpose means to give to proceed. -
An Overview of the Building Delivery Process
An Overview of the Building Delivery CHAPTER Process 1 (How Buildings Come into Being) CHAPTER OUTLINE 1.1 PROJECT DELIVERY PHASES 1.11 CONSTRUCTION PHASE: CONTRACT ADMINISTRATION 1.2 PREDESIGN PHASE 1.12 POSTCONSTRUCTION PHASE: 1.3 DESIGN PHASE PROJECT CLOSEOUT 1.4 THREE SEQUENTIAL STAGES IN DESIGN PHASE 1.13 PROJECT DELIVERY METHOD: DESIGN- BID-BUILD METHOD 1.5 CSI MASTERFORMAT AND SPECIFICATIONS 1.14 PROJECT DELIVERY METHOD: 1.6 THE CONSTRUCTION TEAM DESIGN-NEGOTIATE-BUILD METHOD 1.7 PRECONSTRUCTION PHASE: THE BIDDING 1.15 PROJECT DELIVERY METHOD: CONSTRUCTION DOCUMENTS MANAGEMENT-RELATED METHODS 1.8 PRECONSTRUCTION PHASE: THE SURETY BONDS 1.16 PROJECT DELIVERY METHOD: DESIGN-BUILD METHOD 1.9 PRECONSTRUCTION PHASE: SELECTING THE GENERAL CONTRACTOR AND PROJECT 1.17 INTEGRATED PROJECT DELIVERY METHOD DELIVERY 1.18 FAST-TRACK PROJECT SCHEDULING 1.10 CONSTRUCTION PHASE: SUBMITTALS AND CONSTRUCTION PROGRESS DOCUMENTATION Building construction is a complex, significant, and rewarding process. It begins with an idea and culminates in a structure that may serve its occupants for several decades, even centuries. Like the manufacturing of products, building construction requires an ordered and planned assembly of materials. It is, however, far more complicated than product manufacturing. Buildings are assembled outdoors by a large number of diverse constructors and artisans on all types of sites and are subject to all kinds of weather conditions. Additionally, even a modest-sized building must satisfy many performance criteria and legal constraints, requires an immense variety of materials, and involves a large network of design and production firms. Building construction is further complicated by the fact that no two buildings are identical; each one must be custom built to serve a unique function and respond to its specific context and the preferences of its owner, user, and occupant. -
Architectural and Engineering Technology (A/ET)
Architectural and Engineering Technology (A/ET) The Architectural and Engineering Technology +Course may be applied to Associate Degree General Department offers vocational and paraprofessional Education requirement. programs in architectural and engineering technology For Associate Degree General Education requirements, as well as preparation for transfer to four- and five- refer to page 112. year architecture programs. Recommended: A/ET 45, 108 The curriculum provides necessary skills for Art 60, 70 employment in the design and construction Comm 1A, 1B or 45 fields. Students may prepare for positions as CAD Engl 1B, 53 drafters, surveyor aides, office managers, and other Photo 10 occupations in public and private sector architecture and engineering offices. Supplemental courses offer students a broad architectural, engineering, and general ENGINEERING TECHNOLOGY education background and enable them to continue their education in architecture at the university level. Degree Major/Certificate Requirements: For lower division engineering courses, refer to Dept/No. Title Units Engineering Department. FIRST SEMESTER A/ET 14 Mechanical Drafting and Design I 4 ARCHITECTURAL TECHNOLOGY A/ET 35 Perspective, Shades and Shadows I 2 Laney College 2009 - 2011 SECOND SEMESTER Degree Major/Certificate Requirements: A/ET 24 Mechanical Drafting and Design II 4 A/ET 100 Measurements and Plane Surveying I 3 Dept/No. Title Units THIRD SEMESTER FIRST SEMESTER A/ET 34 Mechanical Drafting and Design III 4 A/ET 10 Introduction to Design Professions and A/ET -
Building Design Authority
BUILDING DESIGN AUTHORITY Board for Professional Engineers and Land Surveyors 2535 Capitol Oaks Drive, Suite 300 Sacramento, CA 95833 1-866-780-5370 www.bpelsg.ca.gov [email protected] STRUCTURAL ENGINEERS may design any building of any type. CIVIL ENGINEERS may design any building of any type EXCEPT public schools and hospitals. ARCHITECTS may design any building of any type EXCEPT the structural portion of a hospital. UNLICENSED INDIVIDUALS may design only the following types of buildings: Single-family dwellings of not more than two stories and basement in height. Multiple dwellings containing not more than four dwelling units of woodframe construction of not more than two stories and basement in height and no more than four dwelling units per lot. Garages or other structures appurtenant to the dwellings described above of woodframe construction not more than two stories and basement in height. NOTE: If any portion of the structures described above does not meet the conventional woodframe requirements described in Title 24 of the California Code of Regulations or in the building codes of the local jurisdiction, then the building official having jurisdiction shall require the plans, calculations, and specifications for that portion of the structure to be prepared and signed and sealed by a licensed engineer or a licensed architect. Agricultural and ranch buildings of wood frame construction, unless the building official having jurisdiction determines that an undue risk to the public health, safety, or welfare is involved. Store fronts, interior alterations or additions, fixtures, cabinetwork, furniture, or other appliances or equipment, including any work necessary to install these items, or any alterations or additions to any building necessary to install these items, as long as the alterations do not affect the structural safety of the building. -
The Bridge & Structural Engineer
The Bridge & Structural Engineer Indian National Group of the International Association for Bridge and Structural Engineering ING - IABSE Contents : Volume 46, Number 4 : December 2016 Editorial ● From the Desk of Chairman, Editorial Board : Mr. Alok Bhowmick iv ● From the Desk of Guest Editor : Mr. P Surya Prakash vi Special Topic : Challenges Facing the Civil & Structural Engineering Industry 1. Challenges Facing the Civil & Structural Engineering Fraternity in India 1 Elattuvalapil Sreedharan, Mahesh Tandon 2. Role of Civil and Structural Engineers in Sustainable Built Environment 4 Subramanian Narayanan 3. Civil/Structural Engineering Education & Professional Practice in India : An Introspection 19 Manoj Mittal 4. Challenges for the Consulting Engineering Fraternity 23 Sayona Philip 5. Civil Engineers – Establishing Their Role 27 R. Gogia 6. Let’s Continue to Practice without Legislation for Engineers 32 Sudhir Dhawan 7. Engineering Design Services in India - Challenges Ahead 35 Amitabha Ghoshal 8. Challenges Facing Structural Engineers & Engineering Organizations 39 Alpa Sheth, Rajendra Gill 9. Ethics and Structural Design of Buildings 44 Sangeeta Wij 10. India’s Vision 2030 What Engineers & Technologists Can Do? 49 Ajit Sabnis CONTENTS 11. Developing the Next Generation of Civil Engineers – A Challenging Task Ahead 53 Alok Bhowmick Panorma ● Highlights of the ING-IABSE Seminar on “Urban Transport Corridors” held at 58 Visakhapatnam (Andhra Pradesh) on 21st and 22nd October, 2016 ● Message from Vice President of India 61 ● Message -
Architectural and Engineering Basic Services Fee Negotiation Guidelines
Architectural and Engineering Basic Services Fee Estimating Guidelines Basic Services is the design work customary on a typical project to take an established building program, site, and budget, and then develop the architectural design, engineer the building systems, produce construction documents, and perform construction administration for a single phase project. Basic Services include the design services customary on every project such as architectural, structural, civil, mechanical, and electrical engineering services. Basic Services are described in the Standard Consulting Agreement. The following method estimates the Basic Services fees using the Amount Available for Construction (AAC) from the established project budget. The fees are expressed as percentage of AAC for six (6) projects types with differing levels of complexity for both New Construction and Renovation. The Project Types are: Project Type I – Considerably Less than Average Complexity: Farm Structures, shop & Maintenance, Service, Warehouses, Storage Facilities, Parking Structures. Project Type II – Less Than Average Complexity: Student Housing, Office Buildings, Complex Parking Structures. Project Type III – Average Complexity: Classroom Facilities, General Teaching Spaces, Medical Offices, Clinics, Gymnasia. Project Type IV – More Than Average Complexity: Complex University Buildings, Engineering Laboratories, University Libraries, Dining Facilities, Theaters, Arenas, Auditoriums, Medical Schools. Project Type V – Considerably More than Average Complexity: Science and Medical Research Buildings, Hospitals, Museums. Project Type VI – Engineering Projects: Campus/Building Chilled Water, Steam, Fire Protection, or Hot Water Systems; Campus/Building Electrical Distribution Systems; Building Replacement Mechanical or Electrical Systems; Building or Campus Generator Systems; Campus Fire Alarm or Security Systems; Outdoor Lighting or Sports Lighting; Retrofit Building Fire Protection Systems; Campus Voice/Data Systems. -
Kenneth Frampton — Megaform As Urban Landscape
/ . ~ - . ' -- r • • 1 ·' \ I ' 1999 Raoul Wallenberg Lecture . __ . Meg~fQrm as Urban .Landscape ~ · ~ · _ · - Kenneth Framrton . l • r ..... .. ' ' '. ' '. ,·, ·, J ' , .. .• -~----------- .:.. Published to commemorate the Raoul Wallenberg Memorial Lecture given by Kenneth Frampton at the College on February 12, 1999. Editor: Brian Carter Design: Carla Swickerath Typeset in AkzidenzGrotesk and Baskerville Printed and bound in the United States ISBN: 1-89"97-oS-8 © Copyright 1999 The University of Michigan A. Alfred T aubman College of Architecture + Urban Planning and Kenneth Frampton, New York. The University of Michigan A. Alfred Taubman College of Architecture + Urban Planning 2000 Bonisteel Boulevard Ann Arbor, Michigan 48109-2069 USA 734 764 1300 tel 734 763 2322 fax www.caup.umich.edu Kenneth Frampton Megaform as Urban Landscape The University of Michigan A. Alfred Taubman College of Architecture + Urban Planning 7 Foreword Raoul Wallenberg was born in Sweden in 1912 and came to the University of Michigan to study architecture. He graduated with honors in 1935, when he also received the American Institute of Architects Silver Medal. He returned to Europe at a time of great discord and, in 1939, saw the outbreak of a war which was to engulf the world in unprecedented terror and destruction. By 1944 many people, including thousands ofjews in Europe, were dead and in March of that year Hitler ordered Adolph Eichman to prepare for the annihilation ofthejewish population in Hungary. In two months 450,000 Jews were deported to Germany, and most of those died. In the summer of that same year Raoul Wallenberg, who was 32 years old, went to Budapest as the first Secretary of the Swedish Delegation in Hungary. -
Structural Engineers Association of Northern California
575 Market Street, Suite 2125 | San Francisco, CA 94105-2870 email: [email protected] | 415-974-5147 www.seaonc.org Structural Engineers Association OF NORTHERN CALIFORNIA Our mission: To advance the practice of structural engineering, to build community among our members, and to educate the public regarding the structural engineering profession. Our vision: A world in which structural engineers are valued by the public for their contributions to building a safer and stronger community. MARCH 2019 See our History, Mission Statement, and Bylaws for more information. Vol. XXII, No. 3 INSIDE THIS ISSUE PRESIDENT’S MESSAGE In the last year or so we have seen a number of high profile failures in President’s Message pp. 1-2 our infrastructure system here in the Bay Area. There was the leaning Upcoming Events pp. 2-5 skyscraper that made national news, the cracked steel beams that shut down a brand new transit center, and the hundreds of buildings that Committee News p. 5 burned down in wildfires. In the month of February alone, there was a major bridge shut down because of crumbling concrete and a major Job Forum pp. 7-15 highway shut down because of a levee breech. I can certainly think of better ways to celebrate National Engineers Week. All of this bad news can be discouraging to civil and structural engineers. After all, we design structures to withstand the forces of nature, not to succumb to them. People in our community depend on us to design safe and durable structures, so when a structure fails the public often reinforces the mindset that engineers are responsible for the failure when they ask us why we think something failed.