INTRODUCTION Possible Effects of Climate Change on Ecological

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION Possible Effects of Climate Change on Ecological 10.2478/v10060-008-0026-1 Annals of Warsaw University of Life Sciences – SGGW Land Reclamation No 38, 2007: 95–104 (Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 38, 2007) Possible effects of climate change on ecological functioning of shallow lakes, Lake Loenderveen as a case study SEBASTIAAN A. SCHEP1, GERARD N.J. TER HEERDT2, JAN H. JANSE3, MAARTEN OUBOTER2 1Witteveen+Bos, The Netherlands 2Waternet, The Netherlands 3MNP/NLB, The Netherlands Abstract: Possible effects of climate change on INTRODUCTION ecological functioning of shallow lakes, Lake Loenderveen as a case study. The European The European Water Framework Water Framework Directive (WFD) requires all inland and coastal waters to reach “good Directive (WFD) requires all inland and ecological status” by 2015. The good ecological coastal waters to reach “good ecological status of shallow lakes can be characterised by status” ultimately in 2027. In general, clear water dominated by submerged vegetation. a shallow lake in good ecological The ecological response of shallow lakes on condition can be characterised by clear nutrients largely depends on morphological and hydrological features, such as water depth, water, small amounts of phytoplankton, retention time, water level fl uctuations, bottom vegetation dominated by submerged type, fetch etc. These features determine the vegetation and rich (macro) invertebrate “critical nutrient load” of a lake. When the actual and fi sh communities (Scheffer, 2001). nutrient load of a lake is higher than the critical The actual ecological state (clear nutrient load, the ecological quality of this lake will deteriorate, resulting in a turbid state dominated or turbid) of shallow lakes largely by algae. Climate change might lead to changes depends on the actual nutrient load and in both environmental factors and ecosystem the “critical nutrient load”. The critical response. This certainly will have an effect on the nutrient load is the nutrient load needed to ecological status. As an illustration the results of make a clear lake become turbid and vice a multidiscipline study of a shallow peaty lake versa. Because of hysteresis processes (Loenderveen) are presented, including hydrology, geochemistry and ecology. Ground- and surface two critical nutrient loads (CNL) can be water fl ows, nutrient dynamics and ecosystem defi ned (Scheffer, 2001). The shift from functioning have been studied culminating in an clear to turbid (eutophication, CNLeu) application of the ecological model of the lake often occurs at a much higher nutrient (PCLake). Future scenarios were implemented load than the switch back from turbid through changing precipitation, evaporation and temperature. Climate change will lead to higher to clear (oligotrophication, CNLoligo). nutrient loads and lower critical nutrient loads. As When the nutrient load is below CNLoligo a consequence lakes shift easier from clear water the lake is stably clear, when the load is to a turbid state. above CNLeu the lake is stably turbid (Fig. Key words: shallow lakes, climatic change, 1). In the intermediate range, both states PCLake model, nutrient load. may exist and switches between the two 96 S.A. Schep et al. FIGURE 1. Critical nutrient loads of shallow lakes related to submerged vegetation states are possible (multiple stable state Chemical and bacteriological processes (Scheffer et al., 1993; Scheffer, 2001)). and the growth rates of phytoplankton The critical nutrient load depends on and submerged vegetation increase when morphological features (water depth, soil temperature increases (Mooij et al., 2005; type and lake size), hydrological features Mooij et al., 2007). (ground- and surface water fl ow, retention Each individual lake will be differently time, water level fl uctuations) and climate affected by climate change. In general, conditions (water temperature). The the critical nutrient loads, CNLoligo actual nutrient load depends on climate and CNLeu might likely decrease with conditions (precipitation, evaporation) increasing temperature and precipitation and environmental conditions (water (Mooij et al., 2005). The decrease of quality). CNLeu combined with an increase of Most shallow lakes in the Netherlands the nutrient load might cause a clear are in the turbid, eutrophic state (Gulati lake to become turbid, while a decreased and van Donk, 2002). Because of CNLoligo will hamper the return towards mostly food-web related self-stabilizing the clear state. Therefore, to determine mechanisms (see e.g. Scheffer, 1998) realistic and sustainable goals and restoration measures mainly aimed at measures for the WFD, water quality reducing the nutrient load did not succeed. managers should take climate change Therefore other approaches are needed. into account. Instead of reducing the nutrient load, the The main goal of this study is to critical nutrient load can be increased by relate effects of climate change to changing system characteristics or when the ecological functioning of Lake the nutrient load is in the intermediate Loenderveen. Further a methodology range biomanipulation can be a preferable to study the potential effect of climate measure (Gulati and Van Donk, 2002). change on lake ecosystems is developed Climate change might lead to and tested. changes in both environmental factors Ground- and surface water fl ows, and ecosystem response. Hydraulic and nutrient dynamics and ecosystem nutrient load will increase with increasing functioning have been studied culminating precipitation (Mooij et al., 2005). in an application of the ecological model Possible effects of climate change on ecological functioning... 97 PCLake. A nutrient balance is used to on the water balance of the adjacent lake predict effects of climate change on the Terra Nova, Terra Nova (water surface nutrient load. PCLake is used to predict 89.5 ha, average depth 1.43 m, residence effects of climate change on the critical time 0.5 year) is included in the water and nutrient load. nutrient balance. The studied period is from 1970 to 2004, because of important historical nutrient loads. METHODS The hydrology of both lakes is simple. Precipitation and evaporation dominate This study is focused on the isolated and the water balance, because of the isolated mainly rainwater fed Lake Loenderveen, position of the lakes. Groundwater part of the Loosdrecht Lakes system infl uence is almost negligible. During in the Netherlands (Fig. 2). The lake is water shortage of Lake Loenderveen or oval shaped. Some characteristics: the Terra Nova, water is supplied from the size is 237 ha, the fetch is 1540 m, the adjacent Lake Loosdrecht via an inlet mean depth is 2.31 m and the residence culvert in the south. When the water time is > 1.5 years. The bottom is peaty; level is high in either Lake Loenderveen with 10% dry matter, containing 58% or Terra Nova, water is pumped to the organic matter and 12% lutum. Organic river Vecht through a pumping station. matter is mainly detritus (90%). Until Since 1973 Lake Loenderveen and Terra 1984 the water was clear and large areas Nova are separated through a weir. Water were covered with submerged vegetation passes the weir during high water levels (Best et al., 1994). In 1987 the water in Lake Loenderveen or water shortage had become turbid (Dekker et al., 1992) in Terra Nova. and all submerged vegetation had been Precipitation and evaporation gone. data were collected from the Royal The ecological status of the lake is Netherlands Meteorological Institute, predicted by the ecological lake model weather station De Bilt. Water levels of PCLake. The framework of the model is Lake Loenderveen, Terra Nova and its defi ned by an accurate water and nutrient adjacent lakes were measured. Seepage balance. Because inlet and outlet of water and infi ltration in both Terra Nova and in Lake Loenderveen is partly depended Lake Loenderveen were modelled with Terra Nova (outlet) weir pumping station Lake Loenderveen inlet culvert FIGURE 2. Lake Loenderveen (Google Earth 2005) 98 S.A. Schep et al. the Multi Layer Analytical Element estimated as 0.02 mg·l–1 and 0.1 mg·l–1 Model MLAEM (de Lange, 1991) and respectively. PCLake calculates P release appeared to be a linear function of the from the sediment. Nitrogen fl uxes are difference between the water levels of less important in Lake Loenderveen. the adjacent lakes and Lake Loenderveen Based on measurements, the NP-ratio in and Terra Nova. Discharges through PCLake was set to 34. weir, culvert and outlet were estimated PCLake is a mathematical, deter- as the water surplus and water shortage ministic, zero dimensional, process respectively, and compared to the based, integrated ecosystem lake model measured in and outlet. (Fig. 3). The model has been calibrated The water balance was validated on more than 40 mainly Dutch lakes and with the chloride balance. Chloride a systematic sensitivity and uncertainty concentrations are measured in inlet analysis has been performed (Aldenberg water and lake water and estimated in et al., 1995; Janse, 2005). precipitation and seepage water as 6 The aim of PCLake is to analyze mg·l–1 and 25 mg·l–1 respectively. the probability of a transition from a The nutrient balance is mainly clear water (dominated by submerged focused on phosphorus (P), as on average vegetation) to a turbid water state P is the limiting nutrient for algae and (dominated by phytoplankton), or vice water plant production. Concentrations versa, as a function of the external of total P in inlet water and lake water nutrient loading and other factors (Janse, were measured. Concentrations of P in 2005). With PCLake the critical nutrient precipitation and seepage water were loads, CNLeu and CNLoligo, are estimated, FIGURE 3. PCLake Model Structure Possible effects of climate change on ecological functioning... 99 depending on among others water depth, both a macrophyte dominated clear and hydraulic loading rate, fetch, sediment a phytoplankton dominated turbid state. type, marsh size and water temperature A clear state is defi ned as chlorophyll-a (which is related to climate scenarios).
Recommended publications
  • Alternative Stable States in Large Shallow Lakes?
    Journal of Great Lakes Research 40 (2014) 813–826 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online 16 October 2014 shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake. We include the effect of lake size, spa- Index words: tial heterogeneity and internal connectivity on a lake's response along the eutrophication axis.
    [Show full text]
  • Alternative Stable States in Large Shallow Lakes?
    Journal of Great Lakes Research 40 (2014) 813–826 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online 16 October 2014 shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake. We include the effect of lake size, spa- Index words: tial heterogeneity and internal connectivity on a lake's response along the eutrophication axis.
    [Show full text]
  • Physico-Chemical Functioning and Development of Phytoplankton in Karaoun Reservoir (Lebanon)
    A Dissertation presented to obtain Doctoral degree from Université Paris-Est Speciality: Sciences and Techniques of Environment by Ali FADEL Doctoral School: Sciences, Engineering and Environment Physico-chemical functioning and development of phytoplankton in Karaoun Reservoir (Lebanon). Application of a hydrodynamic- ecological model. This thesis was conducted between École Nationale des Ponts et Chaussées (France) and Commission Libanaise de l'Energie Atomique (Lebanon) and defended on 22 September 2014 in front of the thesis committee composed of: Myriam Bormans Reviewer Catherine Quiblier Reviewer Sarah Dorner Examiner Julien Némery Examiner Brigitte Vinçon-Leite Thesis director Kamal Slim Thesis director Bruno Lemaire Thesis co-director Ali Atoui Thesis co-director Bruno Tassin Invited member Nabil Amacha Invited member Thèse présentée pour obtenir le grade de docteur de l’ : Université Paris-Est Spécialité : Sciences et Techniques de l’Environnement par Ali FADEL Ecole Doctorale : Sciences, Ingénierie et Environnement Fonctionnement physico-chimique et développement du phytoplancton dans le réservoir de Karaoun (Liban). Application d’un modèle couplé hydrodynamique-écologique. Thèse soutenue le 22 septembre 2014 devant le jury composé de : Myriam Bormans Directeur de recherche, Université de Rennes 1 (Rapporteur) Catherine Quiblier Maître de conférences HDR, Université Paris Diderot (Rapporteur) Sarah Dorner Professeur, École Polytechnique Montréal ( Examinateur) Julien Némery Enseignant-chercheur, Université de Grenoble (Examinateur)
    [Show full text]
  • Modelling Eutrophication in Lake Ecosystems: a Review
    Science of the Total Environment 651 (2019) 2985–3001 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Modelling eutrophication in lake ecosystems: A review Brigitte Vinçon-Leite a,⁎, Céline Casenave b a LEESU Ecole des Ponts ParisTech, AgroParisTech, UPEC 6-8 Avenue Blaise Pascal, 77455, Marne-la-Vallée, France b INRA, UMR MISTEA - Mathematics, Informatics and STatistics for Environment and Agronomy, 2 place Pierre Viala, 34060, Montpellier, France HIGHLIGHTS GRAPHICAL ABSTRACT • Lake eutrophication models applied to study sites with management objectives • Focus on process-based models and cyanobacteria dynamics • Coupling of hydrodynamics and ecolog- ical processes • Comparison of model results to field data • Review based on a validated methodol- ogy of ScientificCollectiveExpertise article info abstract Article history: Eutrophication is one of the main causes of the degradation of lake ecosystems. Its intensification during the last Received 30 July 2018 decades has led the stakeholders to seek for water management and restoration solutions, including those based Received in revised form 24 September 2018 on modelling approaches. This paper presents a review of lake eutrophication modelling, on the basis of a scien- Accepted 24 September 2018 tific appraisal performed by researchers for the French ministries of Environment and Agriculture. After a brief Available online 26 September 2018 introduction presenting the scientific context, a bibliography analysis is presented. Then the main results ob- Keywords: tained with process-based models are summarized. A synthesis of the scientist recommendations in order to im- fi Process-based models prove the lake eutrophication modelling is nally given before the conclusion.
    [Show full text]
  • Food Web Regulation Under Different Forcing Regimes in Shallow Lakes –
    Institute of Biochemistry and Biology Ecology and Ecosystem Modelling Food web regulation under different forcing regimes in shallow lakes – synthesis and modelling Ph D. Thesis (cummulative) in partial fulfillment for the award of the degree “doctor rerum naturalium” (Dr. rer. nat.) in the scientific discipline of “Ecology” submitted to the Faculty of Science University of Potsdam by Betty Lischke Berlin, November 2015 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-89149 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89149 Institut für Biochemie und Biologie Ökologie und Ökosystemmodellierung Food web regulation under different forcing regimes in shallow lakes – synthesis and modelling Dissertation (kumulativ) zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin „Ökologie“ eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Betty Lischke Berlin, November 2015 Contents Contents GENERAL INTRODUCTION 1 Thesis outline 8 DECLARATION OF CONTRIBUTIONS 9 CHAPTER I – Enhanced t-POM flux reduces resilience of clear state 11 Abstract 12 Introduction 12 Methods 14 PCLake 14 Critical phosphorus loading (CPL) 16 Bifurcation analysis 17 Terrestrial particulate organic matter 17 Scenarios 18 Results 19 Discussion 21 Acknowledgements 25 References 26 Supporting Information 30 CHAPTER II – Winterkill of fish 35 Abstract 36 Introduction 36 Methods 38 Study sites 38 Water sampling and analyses
    [Show full text]
  • Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?
    Environmental Management (2017) 59:619–634 DOI 10.1007/s00267-016-0811-2 Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? 1,2 1 1,3,4 Jan J. Kuiper ● Michiel J. J. M. Verhofstad ● Evelien L. M. Louwers ● 1 3 1,2,5 Elisabeth S. Bakker ● Robert J. Brederveld ● Luuk P. A. van Gerven ● 1,2 2 1,2 Annette B. G. Janssen ● Jeroen J. M. de Klein ● Wolf M. Mooij Received: 29 October 2015 / Accepted: 19 December 2016 / Published online: 2 January 2017 © The Author(s) 2016; This article is published with open access at Springerlink.com Abstract Submerged macrophytes play an important role model indicates that mowing can temporarily reduce nui- in maintaining good water quality in shallow lakes. Yet sance caused by submerged plants in the first weeks after extensive stands easily interfere with various services pro- cutting, particularly when external nutrient loading is fairly vided by these lakes, and harvesting is increasingly applied low. The risk of instigating a regime shift can be tempered as a management measure. Because shallow lakes may by mowing halfway the growing season when the resilience possess alternative stable states over a wide range of of the system is highest, as our model showed. Up to half of environmental conditions, designing a successful mowing the phosphorus entering the system can potentially be strategy is challenging, given the important role of macro- removed along with the harvested biomass. As a result, phytes in stabilizing the clear water state. In this study, the prolonged mowing can prevent an oligo—to mesotrophic integrated ecosystem model PCLake is used to explore the lake from becoming eutrophic to a certain extent, as our consequences of mowing, in terms of reducing nuisance and model shows that the critical nutrient loading, where the ecosystem stability, for a wide range of external nutrient lake shifts to the turbid phytoplankton-dominated state, can loadings, mowing intensities and timings.
    [Show full text]
  • Challenges and Opportunities for Integrating Lake Ecosystem Modelling Approaches
    Aquat Ecol (2010) 44:633–667 DOI 10.1007/s10452-010-9339-3 Challenges and opportunities for integrating lake ecosystem modelling approaches Wolf M. Mooij • Dennis Trolle • Erik Jeppesen • George Arhonditsis • Pavel V. Belolipetsky • Deonatus B. R. Chitamwebwa • Andrey G. Degermendzhy • Donald L. DeAngelis • Lisette N. De Senerpont Domis • Andrea S. Downing • J. Alex Elliott • Carlos Ruberto Fragoso Jr. • Ursula Gaedke • Svetlana N. Genova • Ramesh D. Gulati • Lars Ha˚kanson • David P. Hamilton • Matthew R. Hipsey • Jochem ‘t Hoen • Stephan Hu¨lsmann • F. Hans Los • Vardit Makler-Pick • Thomas Petzoldt • Igor G. Prokopkin • Karsten Rinke • Sebastiaan A. Schep • Koji Tominaga • Anne A. Van Dam • Egbert H. Van Nes • Scott A. Wells • Jan H. Janse Received: 8 July 2010 / Accepted: 9 August 2010 / Published online: 27 August 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A large number and wide variety of lake models. We also discuss a group of approaches that ecosystem models have been developed and published could all be classified as individual based: super- during the past four decades. We identify two challenges individual models (Piscator, Charisma), physiologically for making further progress in this field. One such structured models, stage-structured models and trait- challenge is to avoid developing more models largely based models. We briefly mention genetic algorithms, following the concept of others (‘reinventing the neural networks, Kalman filters and fuzzy logic. There- wheel’). The other challenge is to avoid focusing on after, we zoom in, as an in-depth example, on the only one type of model, while ignoring new and diverse multi-decadal development and application of the approaches that have become available (‘having tunnel lake ecosystem model PCLake and related models vision’).
    [Show full text]
  • Article (Refereed) - Postprint
    Article (refereed) - postprint Trolle, Dennis; Elliott, J. Alex; Mooij, Wolf M.; Janse, Jan H.; Bolding, Karsten; Hamiltion, David P.; Jeppesen, Erik. 2014. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Copyright © 2014 Elsevier Ltd. This version available http://nora.nerc.ac.uk/509397/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software (2014), 61. 371-379. 10.1016/j.envsoft.2014.01.032 www.elsevier.com/ Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Advancing projections of phytoplankton responses to climate change through ensemble modelling Dennis Trolle1,2*, J. Alex Elliott3, Wolf M. Mooij4,5, Jan H. Janse6, Karsten Bolding1,7, David P. Hamilton8 and Erik Jeppesen1,2,9 1) Aarhus University, Department of Bioscience, Vejlsøvej 25, DK-8600 Silkeborg, Denmark 2) Sino-Danish Centre for Education and Research, Beijing, China 3) Centre for Ecology and Hydrology, Algal Modelling Unit, Lake Ecosystem Group, Bailrigg, Lancaster LA1 4AP, England, UK 4) Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O.
    [Show full text]
  • Modeling Decreased Resilience of Shallow Lake Ecosystems Toward Eutrophication Due to Microplastic Ingestion Across the Food Web † ‡ Xiangzhen Kong*, and Albert A
    Article Cite This: Environ. Sci. Technol. 2019, 53, 13822−13831 pubs.acs.org/est Modeling Decreased Resilience of Shallow Lake Ecosystems toward Eutrophication due to Microplastic Ingestion across the Food Web † ‡ Xiangzhen Kong*, and Albert A. Koelmans † Department of Lake Research, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, 39114 Magdeburg, Germany ‡ Aquatic Ecology and Water Quality Management group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands *S Supporting Information ABSTRACT: The discovery of microplastic (MP) being present in freshwaters has stimulated research on the impacts of MP on freshwater organisms. To date, research has focused on primary effects, leaving questions with respect to secondary effects at the level of freshwater food webs unanswered. Here, we use a theoretical modeling approach to investigate the hypothesis that MP imposes negative impacts on the level of freshwater shallow lake food webs. We find that increasing MP levels have the potential to affect the critical phosphorus loading (CPL), which is defined as the threshold for regime shifts between clear and turbid states of the water column. The possible occurrence of catastrophic cascades due to MP pollution is predominantly driven by the negative effects of MP on zooplankton. We explore the possible states of the food web by scenario analysis and show that the secondary effects of MP at current concentrations are likely to be negligible. However, at the current rate of MP production, a 20−40% reduction in the CPL would occur by the end of this century, suggesting a loss of resilience in shallow lakes that would be subject to abrupt changes in the food web under lower nutrient loading.
    [Show full text]
  • Exploring, Exploiting and Evolving Diversity of Aquatic Ecosystem Models: a Community Perspective
    Portland State University PDXScholar Civil and Environmental Engineering Faculty Publications and Presentations Civil and Environmental Engineering 12-2015 Exploring, Exploiting and Evolving Diversity of Aquatic Ecosystem Models: a Community Perspective Annette B.G. Janssen Netherlands Institute of Ecology George B. Arhonditsis University of Toronto Arthur Beusen PBL Netherlands Environmental Assessment Agency Karsten Bolding Aarhus University Louise Bruce The University of Western Australia Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac See P nextart of page the forGeochemistr additionaly authors Commons , Hydrology Commons, and the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Citation Details Janssen, A. B. G., Arhonditsis, G. B., Beusen, A., Bolding, K., Bruce, L., Bruggeman, J., … Mooij, W. M. (2015). Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquatic Ecology, 49(4), 513–548. This Article is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A.
    [Show full text]
  • Alternative Stable States in Large Shallow Lakes?
    JGLR-00791; No. of pages: 14; 4C: 5, 8, 5, 8, 5, 8 Journal of Great Lakes Research xxx (2014) xxx–xxx Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online xxxx shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake.
    [Show full text]
  • FABM-Pclake – Linking Aquatic Ecology with Hydrodynamics
    1 FABM-PCLake – linking aquatic ecology with 2 hydrodynamics 3 4 F. Hu1,2*, K. Bolding1,3, J. Bruggeman3,4, E. Jeppesen1,5, M.R. Flindt2, L. van 5 Gerven6,7, J.H. Janse6,8, A.B.G. Janssen6,7, J.J. Kuiper6,7, W.M. Mooij6,7, D. 6 Trolle1,5 7 [1] Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg, Denmark 8 [2] University of Southern Denmark, Department of Biology, Campusvej 55, 5230 Odense M, 9 Denmark 10 [3] Bolding & Bruggeman ApS, Strandgyden 25, 5466 Asperup, Denmark 11 [4] Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United 12 Kingdom 13 [5] Sino-Danish Center for Education and Research, University of Chinese Academy of 14 Sciences, Beijing 15 [6] Netherlands Institute of Ecology, Department of Aquatic Ecology, 6700 AB Wageningen, 16 The Netherlands 17 [7] Wageningen University, Department of Aquatic Ecology and Water Quality Management, 18 6700 AA, The Netherlands 19 [8] PBL Netherlands Environmental Assessment Agency, Dept. of Nature and Rural Areas, 20 3720 AH Bilthoven, The Netherlands 21 *Corresponce to: Fenjuan Hu ([email protected]) 22 1 1 Abstract 2 This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem 3 model, which we implemented into the Framework for Aquatic Biogeochemical Models 4 (FABM). In contrast to the original model, which was designed for temperate, fully mixed 5 freshwater lakes, the new FABM-PCLake represents an integrated aquatic ecosystem model 6 that can be linked with different hydrodynamic models and allows simulations of 7 hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well 8 as three-dimensional environments.
    [Show full text]