Food Web Regulation Under Different Forcing Regimes in Shallow Lakes –

Total Page:16

File Type:pdf, Size:1020Kb

Food Web Regulation Under Different Forcing Regimes in Shallow Lakes – Institute of Biochemistry and Biology Ecology and Ecosystem Modelling Food web regulation under different forcing regimes in shallow lakes – synthesis and modelling Ph D. Thesis (cummulative) in partial fulfillment for the award of the degree “doctor rerum naturalium” (Dr. rer. nat.) in the scientific discipline of “Ecology” submitted to the Faculty of Science University of Potsdam by Betty Lischke Berlin, November 2015 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-89149 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89149 Institut für Biochemie und Biologie Ökologie und Ökosystemmodellierung Food web regulation under different forcing regimes in shallow lakes – synthesis and modelling Dissertation (kumulativ) zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin „Ökologie“ eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Betty Lischke Berlin, November 2015 Contents Contents GENERAL INTRODUCTION 1 Thesis outline 8 DECLARATION OF CONTRIBUTIONS 9 CHAPTER I – Enhanced t-POM flux reduces resilience of clear state 11 Abstract 12 Introduction 12 Methods 14 PCLake 14 Critical phosphorus loading (CPL) 16 Bifurcation analysis 17 Terrestrial particulate organic matter 17 Scenarios 18 Results 19 Discussion 21 Acknowledgements 25 References 26 Supporting Information 30 CHAPTER II – Winterkill of fish 35 Abstract 36 Introduction 36 Methods 38 Study sites 38 Water sampling and analyses 38 Fish abundance 38 Carbon stable isotope ratios and gut content analysis of roach 40 Phytoplankton and crustacean biomass 40 Data analysis 40 Results 41 Fish biomass, abundance and community structure after partial winterkill 41 Seasonal changes in roach diet after partial winterkill 42 Seasonal development of phytoplankton and crustacean biomass before (2007) and after partial winterkill 44 Discussion 45 Effects of the partial winterkill on fish biomass and community composition 45 Contents Differences in phytoplankton development after a partial winterkill 46 Implications for climate effects on temperate small eutrophic shallow lakes 47 Acknowledgements 48 References 49 CHAPTER III – Ciliates dominating zooplankton 53 Abstract 54 Introduction 54 Methods 56 Study site 56 Zooplankton 57 Phytoplankton 57 Bacteria 58 Data analysis 58 Data for cross lake comparisons 59 Results 59 Metazooplankton biomass and composition 60 Phytoplankton biomass and composition 61 Ciliates biomass and composition 61 Bacterial biomass 63 Ciliate top-down effects on phytoplankton and bacteria 63 Discussion 65 Metazooplankton under severe grazing pressure 65 Effects on phytoplankton 66 Severe top-down control by ciliate dominance 67 Conclusions 70 Acknowledgements 70 References 71 Supporting Information 77 CHAPTER IV – Pelagic and benthic carbon fluxes in shallow lakes 81 Abstract 82 Introduction 82 Methods 83 General overview 83 Autotrophs 84 Bacteria 85 Zooplankton 85 Macrobenthos 85 Fish 86 Contents PDOC pool 86 Food web 86 Results 87 Biomass patterns and carbon fluxes between food web components 87 Pelagic vs. benthic carbon fluxes 89 Pelagic, benthic and food web efficiencies 91 Discussion 92 Conclusion 95 Acknowledgements 96 References 97 Supporting Information 102 GENERAL DISCUSSION 103 Conclusion 111 SUMMARY 113 ZUSAMMENFASSUNG 115 REFERENCES (GENERAL INTRODUCTION AND DISCUSSION) 117 DANKSAGUNG 125 ERKLÄRUNG 127 CURRICULUM VITAE 129 List of Publications 130 Reviewed publications 130 Manuscripts in preparation 130 Scientific Contributions 131 General Introduction General Introduction Living organisms grow and reproduce based on autotrophic or heterotrophic assimilation and they are subject to the consumption by other organisms. These trophic interactions form predator-prey pairs, food chains and food webs, with an increasing degree of complexity regarding the underlying regulating processes. The food web regulation characterizes processes limiting the biomass or production of its components. The dominant processes are the top-down and bottom-up control, which describes the regulation of the prey through predator feeding and the limited availability of resources or prey for the predator, respectively. Thus, in predator-prey systems the prey is usually top-down and the predator bottom-up controlled. In contrast to biotic predator-prey pairs, the utilization of abiotic resources, such as nutrients and light, may form consumer-resource interactions with bottom- up regulated consumers. A bottom-up regulated population increases in biomass if more resources or prey production is available and decreases if less is available. A top-down regulated population is in general characterized by low biomasses and high production to biomass ratios. Their biomass remains stable if the amount of resources or prey production available to them increases. Solely the production of the top-down regulated population can increase up to their physiologically determined maximum production to biomass ratio. A further increase of resources would remain unconsumed. The concept of top-down and bottom-up regulation is continuously extended e.g. to the trophic cascade concept (Carpenter et al., 1985), by including omnivory, leading to apparent competition or apparent mutualism (Abrams et al., 1998) and intraguild predation (Polis et al., 1989), and by considering a weaker or stronger linked parallel food chain (Wollrab et al., 2012). These extensions of the concept of bottom-up regulated predators and top-down regulated prey enhance its utility for food web analyses. Trophic interactions are ubiquitous, but they not necessarily regulate a population. Beyond trophic interactions also non-trophic interactions are relevant for the food web regulation, e.g. the competition for light between autotrophs, the production of allelopathic substances by macrophytes, which hamper the phytoplankton growth (Hilt and Gross, 2008) and macrophytes providing shelter from fish predation (Jeppesen et al., 1997; Timms and Moss, 1984). Finally, also abiotic conditions limit the production of organisms as e.g. well known for crustaceans in spring. A large amount of food is available during the phytoplankton spring bloom, but crustacean growth is limited by low temperatures which diminishes the trophic regulation of phytoplankton (Straile, 2000). Thus, a variety of processes determines the regulation of the food web components, which consequently results in a specific food web structure. Alterations of the top-down and bottom-up regulation under different forcing regimes have presumably consequences at the species, community and ecosystem scale, such as the dominant species, the community biomass and size spectrum and the prevalent ecosystem state (e.g. turbid or clear-water state). Forcing regimes may arise from external and internal, 1 General Introduction abiotic and biotic processes and may strengthen, reduce or even reverse the regulating forces of food web components, as exemplified for aquatic ecosystems (Table 1). Effects of the enhanced input of terrestrial organic matter into aquatic ecosystems (chapter I) and persistent low temperatures in winter (chapter II & III) are categorized as external, abiotic forcing regimes. Western civilization is already aware of the problems regarding large nutrient fluxes, e.g. from agriculture into aquatic ecosystems, as another external, abiotic forcing regime and manage to regulate the fluxes for several ecosystems. However, developing countries still face the major problems of eutrophication e.g. for the stable supply of drinking water. In a tri- trophic food chain higher nutrient availability may cause increased phytoplankton production which is not utilized by their top-down controlled predators. Food web theory predicts that the top-predator of this system accumulates biomass until it is sufficient to sustain a further trophic level. Then, this fourth trophic level leads to control changes at each trophic level, i.e. top-down becomes bottom-up and vice versa (Oksanen et al., 1981). Biomanipulation as an ecosystem management tool relies on this concept and aims to enhance the water quality by reducing the phytoplankton biomass with the introduction of a fourth trophic level, namely piscivorous fish (Benndorf, 1995). Biotic, external processes, as feeding by waterfowls, might also regulate trophic food web interactions (Table 1). The predation pressure by waterfowls on a specific ecosystem food web may strongly vary in time, as they are mobile and thus have access to prey from different ecosystems. Waterfowls feeding from aquatic food webs export biomass and therefore, either strengthen the bottom-up control of the organisms’ predator or release its prey from top-down pressure. The waterfowls’ excrements and organic matter or even living organisms transported within their feathers are an import to aquatic ecosystems, which may again alter the ecosystem food web regulation. Besides external, also internal, abiotic forcing regimes such as the stratification of lakes may affect the food web regulation. Stratification hampers the access to nutrients for phytoplankton and thus their production especially in oligotrophic systems, which may consequently lead to bottom-up regulated predators. Additionally, internal, biotic processes may strongly alter the trophic food web interactions, for example the formation of defense strategies against predation, which can be morphological, chemical or realized by predator avoidance.
Recommended publications
  • Alternative Stable States in Large Shallow Lakes?
    Journal of Great Lakes Research 40 (2014) 813–826 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online 16 October 2014 shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake. We include the effect of lake size, spa- Index words: tial heterogeneity and internal connectivity on a lake's response along the eutrophication axis.
    [Show full text]
  • Alternative Stable States in Large Shallow Lakes?
    Journal of Great Lakes Research 40 (2014) 813–826 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online 16 October 2014 shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake. We include the effect of lake size, spa- Index words: tial heterogeneity and internal connectivity on a lake's response along the eutrophication axis.
    [Show full text]
  • Physico-Chemical Functioning and Development of Phytoplankton in Karaoun Reservoir (Lebanon)
    A Dissertation presented to obtain Doctoral degree from Université Paris-Est Speciality: Sciences and Techniques of Environment by Ali FADEL Doctoral School: Sciences, Engineering and Environment Physico-chemical functioning and development of phytoplankton in Karaoun Reservoir (Lebanon). Application of a hydrodynamic- ecological model. This thesis was conducted between École Nationale des Ponts et Chaussées (France) and Commission Libanaise de l'Energie Atomique (Lebanon) and defended on 22 September 2014 in front of the thesis committee composed of: Myriam Bormans Reviewer Catherine Quiblier Reviewer Sarah Dorner Examiner Julien Némery Examiner Brigitte Vinçon-Leite Thesis director Kamal Slim Thesis director Bruno Lemaire Thesis co-director Ali Atoui Thesis co-director Bruno Tassin Invited member Nabil Amacha Invited member Thèse présentée pour obtenir le grade de docteur de l’ : Université Paris-Est Spécialité : Sciences et Techniques de l’Environnement par Ali FADEL Ecole Doctorale : Sciences, Ingénierie et Environnement Fonctionnement physico-chimique et développement du phytoplancton dans le réservoir de Karaoun (Liban). Application d’un modèle couplé hydrodynamique-écologique. Thèse soutenue le 22 septembre 2014 devant le jury composé de : Myriam Bormans Directeur de recherche, Université de Rennes 1 (Rapporteur) Catherine Quiblier Maître de conférences HDR, Université Paris Diderot (Rapporteur) Sarah Dorner Professeur, École Polytechnique Montréal ( Examinateur) Julien Némery Enseignant-chercheur, Université de Grenoble (Examinateur)
    [Show full text]
  • Modelling Eutrophication in Lake Ecosystems: a Review
    Science of the Total Environment 651 (2019) 2985–3001 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Modelling eutrophication in lake ecosystems: A review Brigitte Vinçon-Leite a,⁎, Céline Casenave b a LEESU Ecole des Ponts ParisTech, AgroParisTech, UPEC 6-8 Avenue Blaise Pascal, 77455, Marne-la-Vallée, France b INRA, UMR MISTEA - Mathematics, Informatics and STatistics for Environment and Agronomy, 2 place Pierre Viala, 34060, Montpellier, France HIGHLIGHTS GRAPHICAL ABSTRACT • Lake eutrophication models applied to study sites with management objectives • Focus on process-based models and cyanobacteria dynamics • Coupling of hydrodynamics and ecolog- ical processes • Comparison of model results to field data • Review based on a validated methodol- ogy of ScientificCollectiveExpertise article info abstract Article history: Eutrophication is one of the main causes of the degradation of lake ecosystems. Its intensification during the last Received 30 July 2018 decades has led the stakeholders to seek for water management and restoration solutions, including those based Received in revised form 24 September 2018 on modelling approaches. This paper presents a review of lake eutrophication modelling, on the basis of a scien- Accepted 24 September 2018 tific appraisal performed by researchers for the French ministries of Environment and Agriculture. After a brief Available online 26 September 2018 introduction presenting the scientific context, a bibliography analysis is presented. Then the main results ob- Keywords: tained with process-based models are summarized. A synthesis of the scientist recommendations in order to im- fi Process-based models prove the lake eutrophication modelling is nally given before the conclusion.
    [Show full text]
  • Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?
    Environmental Management (2017) 59:619–634 DOI 10.1007/s00267-016-0811-2 Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? 1,2 1 1,3,4 Jan J. Kuiper ● Michiel J. J. M. Verhofstad ● Evelien L. M. Louwers ● 1 3 1,2,5 Elisabeth S. Bakker ● Robert J. Brederveld ● Luuk P. A. van Gerven ● 1,2 2 1,2 Annette B. G. Janssen ● Jeroen J. M. de Klein ● Wolf M. Mooij Received: 29 October 2015 / Accepted: 19 December 2016 / Published online: 2 January 2017 © The Author(s) 2016; This article is published with open access at Springerlink.com Abstract Submerged macrophytes play an important role model indicates that mowing can temporarily reduce nui- in maintaining good water quality in shallow lakes. Yet sance caused by submerged plants in the first weeks after extensive stands easily interfere with various services pro- cutting, particularly when external nutrient loading is fairly vided by these lakes, and harvesting is increasingly applied low. The risk of instigating a regime shift can be tempered as a management measure. Because shallow lakes may by mowing halfway the growing season when the resilience possess alternative stable states over a wide range of of the system is highest, as our model showed. Up to half of environmental conditions, designing a successful mowing the phosphorus entering the system can potentially be strategy is challenging, given the important role of macro- removed along with the harvested biomass. As a result, phytes in stabilizing the clear water state. In this study, the prolonged mowing can prevent an oligo—to mesotrophic integrated ecosystem model PCLake is used to explore the lake from becoming eutrophic to a certain extent, as our consequences of mowing, in terms of reducing nuisance and model shows that the critical nutrient loading, where the ecosystem stability, for a wide range of external nutrient lake shifts to the turbid phytoplankton-dominated state, can loadings, mowing intensities and timings.
    [Show full text]
  • Challenges and Opportunities for Integrating Lake Ecosystem Modelling Approaches
    Aquat Ecol (2010) 44:633–667 DOI 10.1007/s10452-010-9339-3 Challenges and opportunities for integrating lake ecosystem modelling approaches Wolf M. Mooij • Dennis Trolle • Erik Jeppesen • George Arhonditsis • Pavel V. Belolipetsky • Deonatus B. R. Chitamwebwa • Andrey G. Degermendzhy • Donald L. DeAngelis • Lisette N. De Senerpont Domis • Andrea S. Downing • J. Alex Elliott • Carlos Ruberto Fragoso Jr. • Ursula Gaedke • Svetlana N. Genova • Ramesh D. Gulati • Lars Ha˚kanson • David P. Hamilton • Matthew R. Hipsey • Jochem ‘t Hoen • Stephan Hu¨lsmann • F. Hans Los • Vardit Makler-Pick • Thomas Petzoldt • Igor G. Prokopkin • Karsten Rinke • Sebastiaan A. Schep • Koji Tominaga • Anne A. Van Dam • Egbert H. Van Nes • Scott A. Wells • Jan H. Janse Received: 8 July 2010 / Accepted: 9 August 2010 / Published online: 27 August 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A large number and wide variety of lake models. We also discuss a group of approaches that ecosystem models have been developed and published could all be classified as individual based: super- during the past four decades. We identify two challenges individual models (Piscator, Charisma), physiologically for making further progress in this field. One such structured models, stage-structured models and trait- challenge is to avoid developing more models largely based models. We briefly mention genetic algorithms, following the concept of others (‘reinventing the neural networks, Kalman filters and fuzzy logic. There- wheel’). The other challenge is to avoid focusing on after, we zoom in, as an in-depth example, on the only one type of model, while ignoring new and diverse multi-decadal development and application of the approaches that have become available (‘having tunnel lake ecosystem model PCLake and related models vision’).
    [Show full text]
  • Article (Refereed) - Postprint
    Article (refereed) - postprint Trolle, Dennis; Elliott, J. Alex; Mooij, Wolf M.; Janse, Jan H.; Bolding, Karsten; Hamiltion, David P.; Jeppesen, Erik. 2014. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Copyright © 2014 Elsevier Ltd. This version available http://nora.nerc.ac.uk/509397/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software (2014), 61. 371-379. 10.1016/j.envsoft.2014.01.032 www.elsevier.com/ Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Advancing projections of phytoplankton responses to climate change through ensemble modelling Dennis Trolle1,2*, J. Alex Elliott3, Wolf M. Mooij4,5, Jan H. Janse6, Karsten Bolding1,7, David P. Hamilton8 and Erik Jeppesen1,2,9 1) Aarhus University, Department of Bioscience, Vejlsøvej 25, DK-8600 Silkeborg, Denmark 2) Sino-Danish Centre for Education and Research, Beijing, China 3) Centre for Ecology and Hydrology, Algal Modelling Unit, Lake Ecosystem Group, Bailrigg, Lancaster LA1 4AP, England, UK 4) Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O.
    [Show full text]
  • Modeling Decreased Resilience of Shallow Lake Ecosystems Toward Eutrophication Due to Microplastic Ingestion Across the Food Web † ‡ Xiangzhen Kong*, and Albert A
    Article Cite This: Environ. Sci. Technol. 2019, 53, 13822−13831 pubs.acs.org/est Modeling Decreased Resilience of Shallow Lake Ecosystems toward Eutrophication due to Microplastic Ingestion across the Food Web † ‡ Xiangzhen Kong*, and Albert A. Koelmans † Department of Lake Research, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, 39114 Magdeburg, Germany ‡ Aquatic Ecology and Water Quality Management group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands *S Supporting Information ABSTRACT: The discovery of microplastic (MP) being present in freshwaters has stimulated research on the impacts of MP on freshwater organisms. To date, research has focused on primary effects, leaving questions with respect to secondary effects at the level of freshwater food webs unanswered. Here, we use a theoretical modeling approach to investigate the hypothesis that MP imposes negative impacts on the level of freshwater shallow lake food webs. We find that increasing MP levels have the potential to affect the critical phosphorus loading (CPL), which is defined as the threshold for regime shifts between clear and turbid states of the water column. The possible occurrence of catastrophic cascades due to MP pollution is predominantly driven by the negative effects of MP on zooplankton. We explore the possible states of the food web by scenario analysis and show that the secondary effects of MP at current concentrations are likely to be negligible. However, at the current rate of MP production, a 20−40% reduction in the CPL would occur by the end of this century, suggesting a loss of resilience in shallow lakes that would be subject to abrupt changes in the food web under lower nutrient loading.
    [Show full text]
  • Exploring, Exploiting and Evolving Diversity of Aquatic Ecosystem Models: a Community Perspective
    Portland State University PDXScholar Civil and Environmental Engineering Faculty Publications and Presentations Civil and Environmental Engineering 12-2015 Exploring, Exploiting and Evolving Diversity of Aquatic Ecosystem Models: a Community Perspective Annette B.G. Janssen Netherlands Institute of Ecology George B. Arhonditsis University of Toronto Arthur Beusen PBL Netherlands Environmental Assessment Agency Karsten Bolding Aarhus University Louise Bruce The University of Western Australia Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac See P nextart of page the forGeochemistr additionaly authors Commons , Hydrology Commons, and the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Citation Details Janssen, A. B. G., Arhonditsis, G. B., Beusen, A., Bolding, K., Bruce, L., Bruggeman, J., … Mooij, W. M. (2015). Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquatic Ecology, 49(4), 513–548. This Article is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A.
    [Show full text]
  • Alternative Stable States in Large Shallow Lakes?
    JGLR-00791; No. of pages: 14; 4C: 5, 8, 5, 8, 5, 8 Journal of Great Lakes Research xxx (2014) xxx–xxx Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr Review Alternative stable states in large shallow lakes? Annette B.G. Janssen a,b,⁎, Sven Teurlincx a, Shuqing An c, Jan H. Janse a,d,HansW.Paerle,WolfM.Mooija,b a Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands b Department of Aquatic Ecology and Water Quality Management, Wageningen University, The Netherlands c School of Life Science, Nanjing University, Nanjing 210093, PR China d PBL, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven, The Netherlands e Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA article info abstract Article history: Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition Received 16 April 2014 changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated Accepted 10 September 2014 state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been Available online xxxx shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow Communicated by Robert McKay lakes either in the lake as whole or restricted to specific regions of the lake.
    [Show full text]
  • FABM-Pclake – Linking Aquatic Ecology with Hydrodynamics
    1 FABM-PCLake – linking aquatic ecology with 2 hydrodynamics 3 4 F. Hu1,2*, K. Bolding1,3, J. Bruggeman3,4, E. Jeppesen1,5, M.R. Flindt2, L. van 5 Gerven6,7, J.H. Janse6,8, A.B.G. Janssen6,7, J.J. Kuiper6,7, W.M. Mooij6,7, D. 6 Trolle1,5 7 [1] Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg, Denmark 8 [2] University of Southern Denmark, Department of Biology, Campusvej 55, 5230 Odense M, 9 Denmark 10 [3] Bolding & Bruggeman ApS, Strandgyden 25, 5466 Asperup, Denmark 11 [4] Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United 12 Kingdom 13 [5] Sino-Danish Center for Education and Research, University of Chinese Academy of 14 Sciences, Beijing 15 [6] Netherlands Institute of Ecology, Department of Aquatic Ecology, 6700 AB Wageningen, 16 The Netherlands 17 [7] Wageningen University, Department of Aquatic Ecology and Water Quality Management, 18 6700 AA, The Netherlands 19 [8] PBL Netherlands Environmental Assessment Agency, Dept. of Nature and Rural Areas, 20 3720 AH Bilthoven, The Netherlands 21 *Corresponce to: Fenjuan Hu ([email protected]) 22 1 1 Abstract 2 This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem 3 model, which we implemented into the Framework for Aquatic Biogeochemical Models 4 (FABM). In contrast to the original model, which was designed for temperate, fully mixed 5 freshwater lakes, the new FABM-PCLake represents an integrated aquatic ecosystem model 6 that can be linked with different hydrodynamic models and allows simulations of 7 hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well 8 as three-dimensional environments.
    [Show full text]
  • FABM-Pclake – Linking Aquatic Ecology with Hydrodynamics
    Geosci. Model Dev., 9, 2271–2278, 2016 www.geosci-model-dev.net/9/2271/2016/ doi:10.5194/gmd-9-2271-2016 © Author(s) 2016. CC Attribution 3.0 License. FABM-PCLake – linking aquatic ecology with hydrodynamics Fenjuan Hu1,2, Karsten Bolding1,3, Jorn Bruggeman3,4, Erik Jeppesen1,5, Morgens R. Flindt2, Luuk van Gerven6,7, Jan H. Janse6,8, Annette B. G. Janssen6,7, Jan J. Kuiper6,7, Wolf M. Mooij6,7, and Dennis Trolle1,5 1Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg, Denmark 2University of Southern Denmark, Department of Biology, Campusvej 55, 5230 Odense M, Denmark 3Bolding & Bruggeman ApS, Strandgyden 25, 5466 Asperup, Denmark 4Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth PL1 3DH, UK 5Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China 6Netherlands Institute of Ecology, Department of Aquatic Ecology, 6700 AB Wageningen, the Netherlands 7Wageningen University, Department of Aquatic Ecology and Water Quality Management, 6700 AA, the Netherlands 8PBL Netherlands Environmental Assessment Agency, Dept. of Nature and Rural Areas, 3720 AH Bilthoven, the Netherlands Correspondence to: Fenjuan Hu ([email protected]) Received: 1 December 2015 – Published in Geosci. Model Dev. Discuss.: 3 February 2016 Revised: 15 June 2016 – Accepted: 16 June 2016 – Published: 1 July 2016 Abstract. This study presents FABM-PCLake, a redesigned ilation and multi-model ensemble simulations. Examples of structure of the PCLake aquatic ecosystem model, which we potential new model applications include climate change im- implemented in the Framework for Aquatic Biogeochemi- pact studies and environmental impact assessment scenarios cal Models (FABM).
    [Show full text]