Identification of Copy Number Abnormalities and Inactivating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laboratory Mouse Models for the Human Genome-Wide Associations
Laboratory Mouse Models for the Human Genome-Wide Associations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kitsios, Georgios D., Navdeep Tangri, Peter J. Castaldi, and John P. A. Ioannidis. 2010. Laboratory mouse models for the human genome-wide associations. PLoS ONE 5(11): e13782. Published Version doi:10.1371/journal.pone.0013782 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8592157 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Laboratory Mouse Models for the Human Genome-Wide Associations Georgios D. Kitsios1,4, Navdeep Tangri1,6, Peter J. Castaldi1,2,4,5, John P. A. Ioannidis1,2,3,4,5,7,8* 1 Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America, 2 Tufts University School of Medicine, Boston, Massachusetts, United States of America, 3 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece, 4 Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, United States of America, 5 Department of Medicine, Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University -
The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms. -
Efficient Analysis of Mouse Genome Sequences Reveal Many Nonsense Variants
Efficient analysis of mouse genome sequences reveal many nonsense variants Sophie Steelanda,b,1, Steven Timmermansa,b,1, Sara Van Ryckeghema,b, Paco Hulpiaua,b, Yvan Saeysa,c, Marc Van Montagud,e,f,2, Roosmarijn E. Vandenbrouckea,b,3, and Claude Liberta,b,2,3 aInflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; bDepartment of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; cDepartment of Internal Medicine, Ghent University, 9052 Ghent, Belgium; dDepartment of Plant Systems Biology, VIB, 9052 Ghent, Belgium; eDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and fInternational Plant Biotechnology Outreach, VIB, Ghent, Belgium Contributed by Marc Van Montagu, March 30, 2016 (sent for review December 31, 2015; reviewed by Bruce Beutler, Stefano Bruscoli, Stefan Rose-John, and Klaus Schulze-Osthoff) Genetic polymorphisms in coding genes play an important role alive, archiving them, and distributing mutant strains to in- when using mouse inbred strains as research models. They have terested users (4). been shown to influence research results, explain phenotypical Since Clarence Little showed in the early 20th century that the differences between inbred strains, and increase the amount of principle of inbreeding also applies to mice, several hundred interesting gene variants present in the many available inbred inbred mouse strains have been generated (5). Some of these lines. SPRET/Ei is an inbred strain derived from Mus spretus that strains display specific phenotypes that are the result of a mutant has ∼1% sequence difference with the C57BL/6J reference ge- gene, and in several cases have formed the basis for identifying nome. -
Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Rare Copy Number Variants Disrupt Genes Regulating Vascular Smooth Muscle Cell Adhesion and Contractility in Sporadic Thoracic Aortic Aneurysms and Dissections Siddharth K. Prakash,1 Scott A. LeMaire,2,3 Dong-Chuan Guo,4 Ludivine Russell,2 Ellen S. Regalado,4 Hossein Golabbakhsh,4 Ralph J. Johnson,4 Hazim J. Safi,5 Anthony L. Estrera,5 Joseph S. Coselli,2,3 Molly S. Bray,1 Suzanne M. Leal,1 Dianna M. Milewicz,4 and John W. Belmont1,* Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network anal- ysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle- specific isoforms of a-actin and b-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n ¼ 387) and inherited TAAD (FTAAD, n ¼ 88). The over- all prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher’s exact test, p ¼ 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease. -
Targeting Lymphomas Through MALT1 Inhibition
www.impactjournals.com/oncotarget/ Oncotarget, December, Vol.3, No 12 Targeting Lymphomas Through MALT1 Inhibition Lorena Fontan and Ari Melnick Diffuse large B-cell lymphoma (DLBCL), the most contain mutations in TLR and BCR signaling components common form of non-Hodgkin Lymphoma, comprises [4, 5]. These data revealed that MALT1 is a bona fide a heterogeneous group of diseases that can be classified therapeutic target, inhibition of which may disrupt into at least three different entities with distinct gene oncogenic signaling induced by somatic mutations in expression signatures. Among these, the activated B ABC-DLBCLs. However Z-VRPR-FMK is not suitable cell-like (ABC)-DLBCLs are the most resistant to as a therapeutic agent due its unfavorable pharmacological current standard immune-chemotherapy regimens [1]. properties. Development of novel targeted therapies with activity Fortunately, two recent studies identified small in this DLBCL subtype is required to improve clinical molecule inhibitors of the MALT1 protease activity outcome for these patients. with potent activity against ABC-DLBCL cells both Efforts to identify recurrent somatic mutations in in vitro and in vivo [6, 7]. One of the studies identified ABC-DLBCLs have revealed common biological themes phenothiazine compounds as mediating reversible MALT1 despite their considerable genetic heterogeneity. Most cleavage inhibition [7]; whereas the other identified a notably frequent activating somatic mutation in B-cell novel compound termed “MALT1 inhibitor-2” (MI- receptor (BCR) and Toll like receptor (TLR) signaling 2), that irreversibly binds the active site of MALT1 and pathways, leading to constitutive NF-κB activity [2]. potently suppresses its enzymatic activity at nanomolar Along these lines the MALT1 paracaspase has emerged as concentrations [6]. -
Ufmylation Inhibits the Proinflammatory Capacity of Interferon-Γ–Activated Macrophages
UFMylation inhibits the proinflammatory capacity of interferon-γ–activated macrophages Dale R. Balcea,1,2, Ya-Ting Wanga,b, Michael R. McAllasterb,1, Bria F. Dunlapa, Anthony Orvedahlc, Barry L. Hykes Jra, Lindsay Droita, Scott A. Handleya, Craig B. Wilend,e, John G. Doenchf, Robert C. Orchardg, Christina L. Stallingsb, and Herbert W. Virgina,1,2 aDepartment of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cDepartment of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; dDepartment of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510; eDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06510; fBroad Institute of MIT and Harvard, Cambridge, MA 02142; and gDepartment of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Herbert W. Virgin, November 19, 2020 (sent for review June 15, 2020; reviewed by Masaaki Komatsu and Hong Zhang) Macrophages activated with interferon-γ (IFN-γ) in combination in regulating this aspect of cellular immunity. Thus, understanding with other proinflammatory stimuli, such as lipopolysaccharide pathways that positively and negatively regulate IFN-γ–dependent or tumor necrosis factor-α (TNF-α), respond with transcriptional macrophage activation is an important priority. and cellular changes that enhance clearance of intracellular path- Here we performed a genome-wide CRISPR screen to identify ogens at the risk of damaging tissues. IFN-γ effects must therefore proteins that negatively regulate IFN-γ responses in macrophages. -
Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells
Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase- Immortalized Human Urothelial Cells Emma J. Chapman,1 Gavin Kelly,2 and Margaret A. Knowles1 1Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom and 2Bioinformatics and Biostatistics Service, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom Abstract non–telomere effects of telomerase and provides further The expression of hTERT, the catalytic subunit of rationale for the use of telomerase inhibitors in UC. telomerase, immortalizes normal human urothelial cells (Mol Cancer Res 2008;6(7):1154–68) (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not Introduction immortalize NHUC, confirming that effects at telomeres The primary and well-documented role of telomerase is as are required for urothelial immortalization. Previous a reverse transcriptase that acts in the maintenance of studies indicate that inhibition of telomerase has an telomere length and structure. Up-regulation of telomerase immediate effect on urothelial carcinoma (UC) cell line expression occurs in the majority of urothelial carcinoma viability, before sufficient divisions to account for (UC) irrespective or stage or grade (1), suggesting that this telomere attrition, implicating non–telomere effects may be an early event in tumorigenesis. Normal human of telomerase in UC. We analyzed the effects of urothelial cells (NHUC) are immortalized by expression of telomerase on gene expression in isogenic mortal and hTERT, the catalytic subunit of telomerase. In contrast to hTERT-transduced NHUC. hTERT expression led to requirements for immortalization in other epithelial cell types consistent alterations in the expression of genes and despite the common loss of expression of p16 in UC, predicted to be of phenotypic significance in inactivation of the CDKN2A locus (encoding p16 and tumorigenesis. -
Association of TNFAIP3 Polymorphism with Rheumatic Heart Disease in Chinese Han Population
Immunogenetics (2009) 61:739–744 DOI 10.1007/s00251-009-0405-8 ORIGINAL PAPER Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population Rong Hua & Ji-bin Xu & Jiu-cun Wang & Li Zhu & bing Li & Yang Liu & Sheng-dong Huang & Li Jin & Zhi-yun Xu & Xiao-feng Wang Received: 6 September 2009 /Accepted: 13 October 2009 /Published online: 10 November 2009 # Springer-Verlag 2009 Abstract In a pair-matched case–control study (239 versus (p=0.000). Under a dominant model, CC/CT carriers had 478) conducted in Chinese Han population, we investigated a 0.54-fold reduced risk of RHD (95% confidence interval the association between tumor necrosis factor-α-induced 0.38–0.75, p=0.000) than TT carriers. Therefore, we report protein 3 (TNFAIP3) gene, tumor necrosis factor receptor- a new genetic variant (rs582757) in the TNFAIP3 gene that associated factor 1 (TRAF1) gene, complement component associated with the prevalence of RHD in Chinese Han 5 (C5) gene, and rheumatic heart disease (RHD). We population. Further genetic and functional studies are observed no association with RHD for the five tagging required to identify the etiological variants in linkage single nucleotide polymorphisms (tSNP) in the C5 gene, disequilibrium with this polymorphism. the three tSNPs in the TNFAIP3 gene, or the two tSNPs in the TRAF1 gene. However, we determined that the tSNP, Keywords Rheumatic heart disease . Polymorphism . rs582757, located at intron_5 of the TNFAIP3 gene, Genetics . Association associated with RHD in Chinese Han population. Both the distribution of genotype and allele frequencies differed significantly between case and control subjects (p=0.001 Introduction and p=0.0004, respectively). -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility
Identification of the Rac GTPase Activating Protein Rho GAP 22 as a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Alexander Francis Rowland Submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research & Faculty of Medicine University of New South Wales ABSTRACT Insulin exerts many of its metabolic actions via the canonical PI3K/Akt pathway leading to phosphorylation and 14-3-3 binding of key metabolic targets. Recognising this, the goal of my thesis was to identify novel actions of insulin. To accomplish this I have conducted a screen to identify insulin-responsive 14-3-3 binding phosphoproteins and in so doing have identified a GTPase Activating Protein (GAP) for Rac1 called Rho GAP 22. Insulin increased 14-3-3 binding to Rho GAP 22 by 4 fold and this effect was PI3Kinase and Akt dependent. Using semi-quantitative mass spectrometry we identified two putative 14-3-3 binding sites (Ser16 and Ser397) within Rho GAP 22 and insulin increased phosphorylation at both of these sites. Mutagenesis studies revealed a complex interplay in phosphorylation at these two sites. Mutating Ser16 to Ala almost completely abolished 14-3-3 binding to Rho GAP 22 in vivo but not in vitro. Phosphorylation of Ser16 both in vitro and in vivo was Akt-dependent and inhibition of Akt prevented 14-3-3 binding to Ser16 in vitro. A truncated Rho GAP 22 protein lacking the N-terminal PH domain and Ser16 interacted with 14-3-3 in vivo and this interaction was Akt dependent. The Ser397 site in Rho GAP 22 is located close to the GAP domain and so it is likely that phosphorylation at this site regulates GAP activity. -
The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D
The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA. -
Haploinsufficiency of A20 Impairs Protein–Protein Interactome and Leads Into Caspase-8-Dependent Enhancement of NLRP3 Inflammasome Activation
Autoinflammatory disorders RMD Open: first published as 10.1136/rmdopen-2018-000740 on 17 October 2018. Downloaded from ORIGINAL ARTICLE Haploinsufficiency of A20 impairs protein–protein interactome and leads into caspase-8-dependent enhancement of NLRP3 inflammasome activation Kristiina Rajamäki,1 Salla Keskitalo,2 Mikko Seppänen,3 Outi Kuismin,4 Paula Vähäsalo,5 Luca Trotta,6 Antti Väänänen,7 Virpi Glumoff,8 Paula Keskitalo,5 Riitta Kaarteenaho,9,10 Airi Jartti,11 Nina Hautala,12 Päivi Jackson,12 Dan C Nordström,13 Janna Saarela,6 Timo Hautala,14 Kari K Eklund,15,16,17 Markku Varjosalo2,18 To cite: Rajamäki K, ABSTRACT Key messages Keskitalo S, Seppänen M, Objectives TNFAIP3 encodes A20 that negatively et al. Haploinsufficiency regulates nuclear factor kappa light chain enhancer of of A20 impairs protein– What is already known about this subject? activated B cells (NF-κB), the major transcription factor protein interactome and A20 is a negative regulator of nuclear factor kappa B coordinating inflammatory gene expression.TNFAIP3 ► leads into caspase-8- (NF- B) having a key role in immune activation and polymorphisms have been linked with a spectrum of κ dependent enhancement autoimmunity. inflammatory and autoimmune diseases and, recently, of NLRP3 inflammasome Loss-of-function mutations in A20 are reported to loss-of-function mutations in A20 were found to cause ► activation. RMD Open lead to an inflammatory disease termed haploinsuf- 2018;4:e000740. doi:10.1136/ a novel inflammatory disease ‘haploinsufficiency ofA 20’ ficiency ofA 20 (HA20). rmdopen-2018-000740 (HA20). Here we describe a family with HA20 caused by a novel TNFAIP3 loss-of-function mutation and elucidate What does this study add? ► Prepublication history and the upstream molecular mechanisms linking HA20 to ► We report a novel p.(Lys91*) A20 mutation and use it additional material for this dysregulation of NF-κB and the related inflammasome as a model to uncover molecular mechanisms relat- paper are available online.