Study of the Common Genetic Background for Rheumatoid Arthritis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acute Lymphoblastic Leukemia Patient with Variant ATF7IP
ISSN 1941-5923 © Am J Case Rep, 2017; 18: 1204-1208 DOI: 10.12659/AJCR.906300 Received: 2017.07.20 Accepted: 2017.08.07 Acute Lymphoblastic Leukemia Patient with Published: 2017.11.14 Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report Authors’ Contribution: BCDF 1,2 Ge Zhang* 1 Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases Study Design A BCD 1 Yanle Zhang* of Women and Children, Ministry of Health, West China Second University Data Collection B Hospital, Sichuan University, Chengdu, Sichuan, P.R. China Statistical Analysis C BD 1 Jianrong Wu 2 Department of Laboratory Medicine, West China Second University Hospital, Data Interpretation D AE 3 Yan Chen Sichuan University, Chengdu, Sichuan, P.R. China Manuscript Preparation E AE 1 Zhigui Ma 3 Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Literature Search F Guizhou, P.R. China Funds Collection G * Ge Zhang and Yanle Zhang contributed equally to this work Corresponding Authors: Zhigui Ma, e-mail: [email protected]; Yan Chen, e-mail: [email protected] Conflict of interest: None declared Patient: Female, 14-month-old Final Diagnosis: Acute lymphoblastic leukemia Symptoms: Fever Medication: — Clinical Procedure: — Specialty: Hematology Objective: Rare disease Background: Chromosomal translocations involving the PDGFRB gene have been reported in a broad spectrum of hemato- logical malignancies. An ATF7IP/PDGFRB fusion was recently identified in a Philadelphia chromosome-like (Ph- like) B-progenitor acute lymphoblastic leukemia (B-ALL) patient. Here we report on a special case of a Ph-like ALL patient who had a variant ATF7IP/PDGFRB fusion. -
Laboratory Mouse Models for the Human Genome-Wide Associations
Laboratory Mouse Models for the Human Genome-Wide Associations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kitsios, Georgios D., Navdeep Tangri, Peter J. Castaldi, and John P. A. Ioannidis. 2010. Laboratory mouse models for the human genome-wide associations. PLoS ONE 5(11): e13782. Published Version doi:10.1371/journal.pone.0013782 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8592157 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Laboratory Mouse Models for the Human Genome-Wide Associations Georgios D. Kitsios1,4, Navdeep Tangri1,6, Peter J. Castaldi1,2,4,5, John P. A. Ioannidis1,2,3,4,5,7,8* 1 Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America, 2 Tufts University School of Medicine, Boston, Massachusetts, United States of America, 3 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece, 4 Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, United States of America, 5 Department of Medicine, Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University -
Modulation of NF-Κb Signalling by Microbial Pathogens
REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm. -
Biological and Prognostic Significance of Chromosome 5Q Deletions in Myeloid Malignancies Aristoteles A.N
Review Biological and Prognostic Significance of Chromosome 5q Deletions in Myeloid Malignancies Aristoteles A.N. Giagounidis,1Ulrich Germing,2 and Carlo Aul1 Abstract The presence of del(5q), either as the sole karyotypic abnormality or as part of a more complex karyotype, has distinct clinical implications for myelodysplastic syndromes (MDS) and acute myeloid leukemia. The 5qÀ syndrome, a subtype of low-riskMDS, is characterized by an isolated 5q deletion and <5% blasts in the bone marrow and can serve as a useful model for studying the role of 5q deletions in the pathogenesis and prognosis of myeloid malignancies. Recent clinical results with lenalidomide, an oral immunomodulatory drug, have shown durable erythroid responses, including transfusion independence and complete cytogenetic remissions in patients with del(5q) MDS with or without additional chromosomal abnormalities. These results indicate that lenalidomide can overcome the pathogenic effect of 5q deletion in MDS and restore bone marrow balance. The data provide important new insights into the pathobiology of 5q chromo- somal deletions in myeloid malignancies. Cytogenetic abnormalities are detected in the bone marrow of preponderance, refractory macrocytic anemia, normal or high over 50% of patients diagnosed with primary myelodysplastic platelet counts, hypolobulated megakaryocytes, and modest syndromes (MDS) or myeloid leukemias, and up to 80% of leukopenia (11, 14, 17). The prognosis is favorable in 5qÀ patients with secondary or therapy-related MDS (1, 2). These syndrome with relatively low risk of transformation to AML abnormalities can be characterized as being balanced or (11, 18). Although the limits of 5q deletions vary among unbalanced (3, 4). Balanced cytogenetic abnormalities include patients with 5qÀ syndrome, the most frequent deletion is reciprocal translocations, inversions, and insertions (3, 5, 6). -
The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms. -
Efficient Analysis of Mouse Genome Sequences Reveal Many Nonsense Variants
Efficient analysis of mouse genome sequences reveal many nonsense variants Sophie Steelanda,b,1, Steven Timmermansa,b,1, Sara Van Ryckeghema,b, Paco Hulpiaua,b, Yvan Saeysa,c, Marc Van Montagud,e,f,2, Roosmarijn E. Vandenbrouckea,b,3, and Claude Liberta,b,2,3 aInflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; bDepartment of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; cDepartment of Internal Medicine, Ghent University, 9052 Ghent, Belgium; dDepartment of Plant Systems Biology, VIB, 9052 Ghent, Belgium; eDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and fInternational Plant Biotechnology Outreach, VIB, Ghent, Belgium Contributed by Marc Van Montagu, March 30, 2016 (sent for review December 31, 2015; reviewed by Bruce Beutler, Stefano Bruscoli, Stefan Rose-John, and Klaus Schulze-Osthoff) Genetic polymorphisms in coding genes play an important role alive, archiving them, and distributing mutant strains to in- when using mouse inbred strains as research models. They have terested users (4). been shown to influence research results, explain phenotypical Since Clarence Little showed in the early 20th century that the differences between inbred strains, and increase the amount of principle of inbreeding also applies to mice, several hundred interesting gene variants present in the many available inbred inbred mouse strains have been generated (5). Some of these lines. SPRET/Ei is an inbred strain derived from Mus spretus that strains display specific phenotypes that are the result of a mutant has ∼1% sequence difference with the C57BL/6J reference ge- gene, and in several cases have formed the basis for identifying nome. -
Confirmation of TNIP1 and IL23A As Susceptibility Loci for Psoriatic Arthritis
Concise report Ann Rheum Dis: first published as 10.1136/ard.2011.150102 on 29 May 2011. Downloaded from Confi rmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis John Bowes, 1 Gisela Orozco, 1 Edward Flynn, 1 Pauline Ho, 1,2 Rasha Brier, 1 Helena Marzo-Ortega, 3 Laura Coates,3 Ross McManus, 4 Anthony W Ryan, 4 David Kane, 5 Eleanor Korendowych, 6 Neil McHugh,6 Oliver FitzGerald, 7 Jonathan Packham, 8,9 Ann W Morgan, 3 Ian N Bruce, 1,2 Anne Barton 1,2 ▶ Additional data ABSTRACT different aetiologies, some differences in suscep- (supplementary tables) are Objectives To investigate a shared genetic aetiology for tibility loci would be expected. The identifi cation published online only. To view skin involvement in psoriasis and psoriatic arthritis (PsA) of risk loci specifi c to psoriasis would provide these fi les please visit the journal online at http://ard.bmj.com. by genotyping single-nucleotide polymorphisms (SNPs), compelling evidence that the genetic basis of the reported to be associated in genome-wide association skin component of the two diseases was differ- 1 Arthritis Research UK Epidemiology Unit, Manchester studies of psoriasis, in patients with PsA. ent. There has been some evidence reported to Academic Health Science Methods SNPs with reported evidence for association support this possibility. Variants within the LCE Centre, The University of with psoriasis were genotyped in a PsA case and control gene locus were reported to be associated with Manchester, Manchester, UK collection from the UK and Ireland. Genotype and allele psoriasis but not PsA in a German cohort, 10 but a 2 The Kellgren Centre for Rheumatology, Central frequencies were compared between PsA cases and subsequent study in a population from the British Manchester Foundation controls using the Armitage test for trend. -
Targeting Lymphomas Through MALT1 Inhibition
www.impactjournals.com/oncotarget/ Oncotarget, December, Vol.3, No 12 Targeting Lymphomas Through MALT1 Inhibition Lorena Fontan and Ari Melnick Diffuse large B-cell lymphoma (DLBCL), the most contain mutations in TLR and BCR signaling components common form of non-Hodgkin Lymphoma, comprises [4, 5]. These data revealed that MALT1 is a bona fide a heterogeneous group of diseases that can be classified therapeutic target, inhibition of which may disrupt into at least three different entities with distinct gene oncogenic signaling induced by somatic mutations in expression signatures. Among these, the activated B ABC-DLBCLs. However Z-VRPR-FMK is not suitable cell-like (ABC)-DLBCLs are the most resistant to as a therapeutic agent due its unfavorable pharmacological current standard immune-chemotherapy regimens [1]. properties. Development of novel targeted therapies with activity Fortunately, two recent studies identified small in this DLBCL subtype is required to improve clinical molecule inhibitors of the MALT1 protease activity outcome for these patients. with potent activity against ABC-DLBCL cells both Efforts to identify recurrent somatic mutations in in vitro and in vivo [6, 7]. One of the studies identified ABC-DLBCLs have revealed common biological themes phenothiazine compounds as mediating reversible MALT1 despite their considerable genetic heterogeneity. Most cleavage inhibition [7]; whereas the other identified a notably frequent activating somatic mutation in B-cell novel compound termed “MALT1 inhibitor-2” (MI- receptor (BCR) and Toll like receptor (TLR) signaling 2), that irreversibly binds the active site of MALT1 and pathways, leading to constitutive NF-κB activity [2]. potently suppresses its enzymatic activity at nanomolar Along these lines the MALT1 paracaspase has emerged as concentrations [6]. -
Confirmation of TNIP1 but Not RHOB and PSORS1C1 As Systemic Sclerosis Risk Factors in a Large Independent Replication Study
Downloaded from ard.bmj.com on August 13, 2013 - Published by group.bmj.com Basic and translational research EXTENDED REPORT Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study Lara Bossini-Castillo,1 Jose Ezequiel Martin,1 Jasper Broen,2 Carmen P Simeon,3 Lorenzo Beretta,4 Olga Y Gorlova,5 Madelon C Vonk,2 Norberto Ortego-Centeno,6 Gerard Espinosa,7 Patricia Carreira,8 Paloma García de la Peña,9 Natividad Oreiro,10 José Andrés Román-Ivorra,11 María Jesús Castillo,12 Miguel A González-Gay,13 Luis Sáez-Comet,14 Ivan Castellví,15 Annemie J Schuerwegh,16 Alexandre E Voskuyl,17 Anna-Maria Hoffmann-Vold,18 Roger Hesselstrand,19 Annika Nordin,20 Claudio Lunardi,21 Raffaella Scorza,4 Jacob M van Laar,22 Paul G Shiels,23 Ariane Herrick,24 Jane Worthington,24 Carmen Fonseca,25 Christopher Denton,25 Filemon K Tan,26 Frank C Arnett,26 Shervin Assassi,26 Bobby P Koeleman,27 Maureen D Mayes,26 Timothy R D J Radstake,2,28 Javier Martin,1 the Spanish Scleroderma Group* ▸ Additional supplementary ABSTRACT different internal organs.1 The contribution of data are published online only. Introduction A recent genome-wide association study fi different genetic factors to the development and To view these les please visit fi 2 the journal online (http://dx.doi. in European systemic sclerosis (SSc) patients identi ed prognosis of the disease is now widely accepted. org/10.1136/annrheumdis- three loci (PSORS1C1, TNIP1 and RHOB)asnovel Over the past few years, genome-wide association 2012-201888.bmj.com). -
Recombinant Human TNIP1 Protein Catalog Number: ATGP0780
Recombinant human TNIP1 protein Catalog Number: ATGP0780 PRODUCT INPORMATION Expression system E.coli Domain 94-530aa UniProt No. Q15025 NCBI Accession No. NP_006049 Alternative Names TNFAIP3 interacting protein 1, ABIN-1, NAF1, VAN, Nip40-1 PRODUCT SPECIFICATION Molecular Weight 51.8 kDa (458aa) confirmed by MALDI-TOF Concentration 0.25mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 7.5) containing 20% glycerol, 5mM DTT, 200mM NaCl Purity > 75% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description TNIP1 (TNFAIP3-interacting protein 1) has been shown to interacts with zinc finger protein A20/TNFAIP3 and inhibits TNF-induced NF-kappa-B-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal. In addition, interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. It may regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. Recombinant human TNIP1 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using 1 Recombinant human TNIP1 protein Catalog Number: ATGP0780 conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MSNVTASPTA PACPSDKPAP VQKPPSSGTS SEFEVVTPEE QNSPESSSHA NAMALGPLPR EDGNLMLHLQ RLETTLSVCA EEPDHGQLFT HLGRMALEFN RLASKVHKNE QRTSILQTLC EQLRKENEAL KAKLDKGLEQ RDQAAERLRE ENLELKKLLM SNGNKEGASG RPGSPKMEGT GKKAVAGQQQ ASVTAGKVPE VVALGAAEKK VKMLEQQRSE LLEVNKQWDQ HFRSMKQQYE QKITELRQKL ADLQKQVTDL EAEREQKQRD FDRKLLLAKS KIEMEETDKE QLTAEAKELR QKVKYLQDQL SPLTRQREYQ EKEIQRLNKA LEEALSIQTP PSSPPTAFGS PEGAGALLRK QELVTQNELL KQQVKIFEED FQRERSDRER MNEEKEELKK QVEKLQAQVT LSNAQLKAFK DEEKAREALR QQKRKAKA General References He CF., et al. -
Newly Identified Gon4l/Udu-Interacting Proteins
www.nature.com/scientificreports OPEN Newly identifed Gon4l/ Udu‑interacting proteins implicate novel functions Su‑Mei Tsai1, Kuo‑Chang Chu1 & Yun‑Jin Jiang1,2,3,4,5* Mutations of the Gon4l/udu gene in diferent organisms give rise to diverse phenotypes. Although the efects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two‑hybrid (Y2H) screening to identify interacting proteins in zebrafsh and mouse systems, confrmed the interactions by co‑immunoprecipitation assay, and found four novel Gon4l‑interacting proteins: BRCA1 associated protein‑1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu‑interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identifed include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these fndings indicate novel mechanisms of Gon4l/ Udu in regulating CpG methylation, histone expression/modifcation, DNA repair/genomic stability, and RNA binding/processing/export. Gon4l is a nuclear protein conserved among species. Animal models from invertebrates to vertebrates have shown that the protein Gon4-like (Gon4l) is essential for regulating cell proliferation and diferentiation. -
Ufmylation Inhibits the Proinflammatory Capacity of Interferon-Γ–Activated Macrophages
UFMylation inhibits the proinflammatory capacity of interferon-γ–activated macrophages Dale R. Balcea,1,2, Ya-Ting Wanga,b, Michael R. McAllasterb,1, Bria F. Dunlapa, Anthony Orvedahlc, Barry L. Hykes Jra, Lindsay Droita, Scott A. Handleya, Craig B. Wilend,e, John G. Doenchf, Robert C. Orchardg, Christina L. Stallingsb, and Herbert W. Virgina,1,2 aDepartment of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cDepartment of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; dDepartment of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510; eDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06510; fBroad Institute of MIT and Harvard, Cambridge, MA 02142; and gDepartment of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Herbert W. Virgin, November 19, 2020 (sent for review June 15, 2020; reviewed by Masaaki Komatsu and Hong Zhang) Macrophages activated with interferon-γ (IFN-γ) in combination in regulating this aspect of cellular immunity. Thus, understanding with other proinflammatory stimuli, such as lipopolysaccharide pathways that positively and negatively regulate IFN-γ–dependent or tumor necrosis factor-α (TNF-α), respond with transcriptional macrophage activation is an important priority. and cellular changes that enhance clearance of intracellular path- Here we performed a genome-wide CRISPR screen to identify ogens at the risk of damaging tissues. IFN-γ effects must therefore proteins that negatively regulate IFN-γ responses in macrophages.