Uptodate CLINICAL GENETICS

Total Page:16

File Type:pdf, Size:1020Kb

Uptodate CLINICAL GENETICS MEDICAL GENETICS UpToDate CLINICAL GENETICS 2015 Index • Genetic and environmental causes of birth defects • Microdeletion syndromes (chromosomes 1 to 11) • Microdeletion syndromes (chromosomes 12 to 22) • Microduplication syndromes • Primary care of the adult with intellectual disability • Intellectual disability (mental retardation) in children 1 • Intellectual disability (mental retardation) in children 2 • Microcephaly in infants and children • Microcephaly/ A clinical genetics approach • Macrocephaly in infants and children/ Etiology and evaluation • Sex chromosome abnormalities • Pulmonic stenosis (PS) in children • Evaluation of male infertility Derleme Dr. Yavuz ŞAHİN Genetic and environmental causes of birth defects http://www.uptodate.com/contents/genetic-and-environmental... Official reprint from UpToDate® www.uptodate.com ©2015 UpToDate® Genetic and environmental causes of birth defects Author Section Editor Deputy Editor Harry Ostrer, MD Louise Wilkins-Haug, MD, PhD Vanessa A Barss, MD, FACOG All topics are updated as new evidence becomes available and our peer review process is complete. Literature review current through: Feb 2015. | This topic last updated: Jan 20, 2015. INTRODUCTION — A major birth defect is one of medical, surgical or cosmetic significance. The prevalence of these defects is 2 to 4 percent among live born infants and does not vary among ethnic groups (table 1). Birth defects may be isolated or multiple and can affect one or more organ systems. Both genetic and environmental factors play a role in their pathogenesis. As an example, parents with a birth defect, a previously affected child, or a family history of birth defects are at higher risk of having a baby with the same, or a different, anomaly. Other risk factors include maternal age, illness, drug use, exposure to infectious or environmental agents, and the physical features of the intrauterine environment. The relative contribution of various etiologies to the overall frequency of birth defects is estimated to be [1]: ● Unknown cause, including suspected polygenic and multifactorial causes (65 to 75 percent) ● Genetic: single gene disorders (15 to 20 percent), chromosomal abnormalities (5 percent) ● Environmental exposures (eg, maternal medical conditions, substance abuse, infection, drugs, chemicals, radiation, hyperthermia; mechanical constraints on fetal development) (10 percent) COMMON FEATURES OF CHROMOSOMAL DISORDERS — There are certain common characteristics of the syndromes that are produced by constitutional chromosomal abnormalities: ● Greater than 90 percent of embryos/fetuses with constitutional chromosomal abnormalities do not survive to term. In trisomy 21, as an example, 40 percent of fetuses are lost after 12 weeks of gestation. Even higher embryonic and fetal loss rates are found with monosomy X. ● Multiple organ systems tend to be involved, especially the central nervous system. Intellectual disability, in particular, is a common abnormality in viable infants. ● The longevity and fertility of individuals with these conditions tend to be reduced. As an example, the risk of malignancy is increased for certain chromosomal disorders, such as trisomy 21, deletions of the long arm of chromosome 13; deletions of the short arm of chromosome 11, and 46,XY gonadal dysgenesis. STRUCTURAL CHROMOSOMAL ABNORMALITIES — Chromosomal abnormalities affect approximately 1 in 200 newborn infants [2,3]. These defects may be either sporadic or heritable and are due to a number of different etiologies. (See "Basic principles of genetic counseling for the obstetrical provider" and "Basic principles of genetic disease".) Nondisjunction — The most common sporadic chromosomal abnormalities result from loss or gain of a chromosome, usually from nondisjunction. Nondisjunction refers to the process whereby paired chromosomes fail to separate during cell division so that both chromosomes go to one daughter cell and none to the other. Thus, after fertilization, one daughter cell inherits three chromosomes of the affected chromosome and becomes trisomic (eg, trisomy 21 or Down syndrome), while the other daughter cell inherits only one chromosome resulting in monosomy (figure 1 and figure 2). Cytogenetic surveys of spontaneous abortions during the first trimester of pregnancy demonstrated that approximately one-half 1 of 36 19.03.2015 10:55 Genetic and environmental causes of birth defects http://www.uptodate.com/contents/genetic-and-environmental... were associated with trisomic or monosomic abortuses [4,5]. (See "Congenital cytogenetic abnormalities".) Trisomic embryos have been described for almost all of the autosomes. Some trisomies (eg, trisomy 13, 18, 21, and those involving the sex chromosomes) can result in live births [6], while others (eg, trisomy 16) are detected only in abortuses. The risk of trisomy of the autosomal and sex chromosomes increases with maternal age, but the magnitude of this risk varies somewhat depending on the chromosome (table 2) [7-9]. The incidence of monosomy X (Turner syndrome) does not increase with maternal age. The extra chromosome of a trisomic group is maternal in origin in the vast majority of cases. This suggests a defect in chromosome segregation during oogenesis, rather than defective spermatogenesis. Prolonged retention of oocytes or sperm in the reproductive tract before fertilization does not seem to be a cause of nondisjunction leading to Down syndrome or of major birth defects [10], but altered recombination appears to have a role [11,12]. In this model, age-related perturbations in the meiotic machinery cause homologues with susceptible crossover configurations to segregate incorrectly. Distal crossovers may be unable to lock homologues together, allowing them to move independently and possibly drift together to the same spindle pole; pericentromeric crossovers may lock homologues too tightly, so they are unable to separate from one another and thus migrate together to the same spindle pole. Nonallelic homologous recombination — Other sporadic chromosomal defects occur through abnormalities in recombination, which refers to the natural process of breaking and rejoining DNA strands during meiosis to produce new combinations of genes and, thus, generate genetic variation. Nonallelic homologous recombination (NAHR) typically involves the exchange of unequal amounts of genetic material during pairing between homologous chromosomes. Thus, the gene copy number is altered or hybrid genes are formed with novel properties. Single-gene phenotypes (ie, a trait or series of traits that can be attributed to mutation in a single gene), are produced that may be transmitted in a Mendelian fashion. For the X and Y chromosomes, the frequency of new unequal recombinational events is approximately 1:30,000 [13]. Structural variation of chromosomes can increase the frequency of unequal recombination. Unequal recombination may delete or disrupt one or more genes; in the latter case, two or more Mendelian phenotypes can be produced. This condition is called a "contiguous gene syndrome" [14]. (See "Congenital cytogenetic abnormalities".) Inversions — Chromosome inversions are the result of abnormal recombinational events. There are two types of inversion (figure 3): ● Paracentric, involving both sides of the centromere. ● Pericentric, involving only one side [15,16]. Paracentric chromosomes form inversion loops to pair with their normal chromosome partners. If crossing over occurs outside the inversion loop, then no abnormal products are formed. If the breakage and recombination occur within the loop, the products have both duplicated and deleted segments, a phenomenon that is referred to as "recombination aneusomy" [17]. The phenotype may be abnormal if the duplicated and deleted regions in the offspring are large in size. The sites of recombination may vary from one gamete to another, so that each offspring may appear to be a sporadic case with a novel phenotype. Deletions and duplications — Deletions are missing portions of a chromosome, while duplications involve an extra copy of a portion of the chromosome. Deletion carriers are effectively monosomic for the genes in the missing segment, whereas duplication carriers are trisomic for the duplicated genes. 2 of 36 19.03.2015 10:55 Genetic and environmental causes of birth defects http://www.uptodate.com/contents/genetic-and-environmental... Deletions and duplications are generally described by their location (eg, duplication 4p) or by the two chromosomal break points defining the defective area (4p15.2,16.1). If the deletion is a common one, it may be defined by an eponym (5 p minus is known as Cri du Chat syndrome). Larger deletions and duplications can be identified cytogenetically because these banding patterns are unique to each chromosome. However, microdeletions and microduplications may be too small to be detected by traditional cytogenetic techniques and may require molecular techniques. Common microdeletions/duplications can be identified by fluorescence in situ hybridization (FISH) using a probe for the deleted or duplicated genes or by array genomic hybridization using microarrays (DNA chips). Some deletions occur more frequently than would be expected by chance alone and cause several specific contiguous gene deletion syndromes. DiGeorge syndrome, as an example, usually results from a microdeletion of the long arm of chromosome 22 (22q11.2) and is associated with phenotypic abnormalities due to defects of the fourth branchial arch and adjacent structures
Recommended publications
  • Phenotype Correlations in Individuals with Pathogenic RERE Variants
    Genotype-phenotype correlations in individuals with pathogenic RERE variants Valerie K. Jordan,1 Brieana Fregeau,2 Xiaoyan Ge,3,4 Jessica Giordano,5 Ronald J. Wapner,5 Tugce B. Balci,6 Melissa T. Carter,6 John A. Bernat,7 Amanda N. Moccia,8 Anshika Srivastava,8 Donna M. Martin,8,9 Stephanie L. Bielas,8 John Pappas,10 Melissa D. Svoboda,11 Marlène Rio,12,13 Nathalie Boddaert,12,14 Vincent Cantagrel,12,15 Andrea M. Lewis,3,16 Fernando Scaglia,3,16 Undiagnosed Diseases Network, Jennefer N. Kohler,17 Jonathan A. Bernstein,17 Annika M. Dries,17 Jill A. Rosenfeld,3 Colette DeFilippo,18 Willa Thorson,19 Yaping Yang,3,4 Elliott H. Sherr,2 Weimin Bi,3,4 Daryl A. Scott1,3,16* 1) Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA 2) Department of Neurology, University of California, San Francisco, San Francisco, CA, USA 3) Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 4) Baylor Genetics, Houston, TX, USA 5) Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, NY, USA 6) Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada 7) Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, USA 8) Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Likely Pathogenic Variants in One Third of Non-Syndromic Discontinuous Cleft Lip and Palate Patients
    G C A T T A C G G C A T genes Article Likely Pathogenic Variants in One Third of Non-Syndromic Discontinuous Cleft Lip and Palate Patients Bénédicte Demeer 1,2,3,4 , Nicole Revencu 1,5, Raphael Helaers 1 , Cica Gbaguidi 6, Stéphanie Dakpe 3,4,6 , Geneviève François 7, Bernard Devauchelle 3,4,6,Bénédicte Bayet 8 and Miikka Vikkula 1,* 1 Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium; [email protected] (B.D.); [email protected] (N.R.); [email protected] (R.H.) 2 Center for Human Genetics, CLAD Nord de France, CHU Amiens-Picardie, 80054 Amiens, France 3 Université Picardie Jules Verne, EA CHIMERE, EA 7516, 80054 Amiens, France; [email protected] (S.D.); [email protected] (B.D.) 4 Facing Faces Institute, 80054 Amiens, France 5 Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium 6 Department of Maxillofacial Surgery and Stomatology, Centre de Compétence Fentes et Malformations Faciales (MAFACE), CHU Amiens-Picardie, 80054 Amiens, France; [email protected] 7 Department of Pediatrics, Cliniques Universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium; [email protected] 8 Centre Labiopalatin, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, 1200 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-2-764-7490 Received: 6 September 2019; Accepted: 19 October 2019; Published: 22 October 2019 Abstract: Oral clefts are composed of cleft of the lip, cleft of the lip and palate, or cleft of the palate, and they are associated with a wide range of expression and severity.
    [Show full text]
  • Tall Stature: a Difficult Diagnosis? Cristina Meazza1* , Chiara Gertosio2, Roberta Giacchero3, Sara Pagani1 and Mauro Bozzola1
    Meazza et al. Italian Journal of Pediatrics (2017) 43:66 DOI 10.1186/s13052-017-0385-5 REVIEW Open Access Tall stature: a difficult diagnosis? Cristina Meazza1* , Chiara Gertosio2, Roberta Giacchero3, Sara Pagani1 and Mauro Bozzola1 Abstract Referral for an assessment of tall stature is less common than for short stature. Tall stature is defined as a height more than two standard deviations above the mean for age. The majority of subjects with tall stature show a familial tall stature or a constitutional advance of growth (CAG), which is a diagnosis of exclusion. After a careful physical evaluation, tall subjects may be divided into two groups: tall subjects with normal appearance and tall subjects with abnormal appearance. In the case of normal appearance, the paediatric endocrinologist will have to evaluate the growth rate. If it is normal for age and sex, the subject may be classified as having familial tall stature, CAG or obese subject, while if the growth rate is increased it is essential to evaluate pubertal status and thyroid status. Tall subjects with abnormal appearance and dysmorphisms can be classified into those with proportionate and disproportionate syndromes. A careful physical examination and an evaluation of growth pattern are required before starting further investigations. Physicians should always search for a pathological cause of tall stature, although the majority of children are healthy and they generally do not need treatment to cease growth progression. The most accepted and effective treatment for an excessive height prediction is inducing puberty early and leading to a complete fusion of the epiphyses and achievement of final height, using testosterone in males and oestrogens in females.
    [Show full text]
  • Chr21 Protein-Protein Interactions: Enrichment in Products Involved in Intellectual Disabilities, Autism and Late Onset Alzheimer Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.872606; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chr21 protein-protein interactions: enrichment in products involved in intellectual disabilities, autism and Late Onset Alzheimer Disease Julia Viard1,2*, Yann Loe-Mie1*, Rachel Daudin1, Malik Khelfaoui1, Christine Plancon2, Anne Boland2, Francisco Tejedor3, Richard L. Huganir4, Eunjoon Kim5, Makoto Kinoshita6, Guofa Liu7, Volker Haucke8, Thomas Moncion9, Eugene Yu10, Valérie Hindie9, Henri Bléhaut11, Clotilde Mircher12, Yann Herault13,14,15,16,17, Jean-François Deleuze2, Jean- Christophe Rain9, Michel Simonneau1, 18, 19, 20** and Aude-Marie Lepagnol- Bestel1** 1 Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France 2 Laboratoire de génomique fonctionnelle, CNG, CEA, Evry 3 Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez-Campus de San Juan 03550 San Juan (Alicante), Spain 4 Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA 5 Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea 6 Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya, Japan 7 Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA 8 Leibniz Forschungsinstitut für Molekulare Pharmakologie
    [Show full text]
  • The Advantage of Genome-Wide Microarrays Over Targeted Approaches
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/70828 Please be advised that this information was generated on 2021-09-24 and may be subject to change. COPY NUMBER VARIATION AND MENTAL RETARDATION opmaak koolen.indd 1 10-09-2008 10:11:31 Copy number variation and mental retardation The studies presented in this thesis were performed at the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. The research was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMw). Publication of this thesis was financially supported by the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. ISBN/EAN 978-90-6464-290-6 © 2008 D.A. Koolen All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, by print or otherwise, without permission in writing from the author. Cover photo: Printed by: Ponsen & Looijen B.V., Wageningen opmaak koolen.indd 2 10-09-2008 10:11:31 Copy number variation and mental retardation Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op donderdag 6 november 2008 om 15.30 uur precies door David Aljosja Koolen geboren op 22 juni 1976 te ‘s-Gravenhage opmaak koolen.indd 3 10-09-2008 10:11:32 Promotor: Prof.
    [Show full text]
  • Genetic Investigation of Patients with Tall Stature
    2 182 E Vasco de Albuquerque Genetic investigation of tall 182:2 139–147 Clinical Study Albuquerque and others stature patients Genetic investigation of patients with tall stature Edoarda Vasco de Albuquerque Albuquerque1, Mariana Ferreira de Assis Funari2, Elisângela Pereira de Souza Quedas1, Rachel Sayuri Honjo Kawahira3, Raquel Soares Jallad4, Thaís Kataoka Homma1, Regina Matsunaga Martin2,5, Vinicius Nahime Brito2, Alexsandra Christianne Malaquias1,6, Antonio Marcondes Lerario1,7, Carla Rosenberg8, Ana Cristina Victorino Krepischi8, Chong Ae Kim3, Ivo Jorge Prado Arnhold2 and Alexander Augusto de Lima Jorge1 1Unidade de Endocrinologia Genética (LIM25), 2Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brasil, 3Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil, 4Unidade de Neuroendocrinologia, 5Unidade de Doenças Osteometabólicas, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brasil, 6Unidade de Endocrinologia Pediátrica, Correspondence Departamento de Pediatria, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brasil, 7Division of should be addressed Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, to A A L Jorge Michigan, USA, and 8Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, Brasil Email [email protected] Abstract Context: Patients with tall stature often remain undiagnosed after clinical investigation and few studies have genetically assessed this group, most of them without a systematic approach. Objective: To assess prospectively a group of individuals with tall stature, with and without syndromic features, and to establish a molecular diagnosis for their growth disorder.
    [Show full text]
  • A Brazilian Cohort of Individuals with Phelan-Mcdermid Syndrome
    Samogy-Costa et al. Journal of Neurodevelopmental Disorders (2019) 11:13 https://doi.org/10.1186/s11689-019-9273-1 RESEARCH Open Access A Brazilian cohort of individuals with Phelan-McDermid syndrome: genotype- phenotype correlation and identification of an atypical case Claudia Ismania Samogy-Costa1†, Elisa Varella-Branco1†, Frederico Monfardini1, Helen Ferraz2, Rodrigo Ambrósio Fock3, Ricardo Henrique Almeida Barbosa3, André Luiz Santos Pessoa4,5, Ana Beatriz Alvarez Perez3, Naila Lourenço1, Maria Vibranovski1, Ana Krepischi1, Carla Rosenberg1 and Maria Rita Passos-Bueno1* Abstract Background: Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. Methodology: A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. Results: Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS.
    [Show full text]
  • RARE CHROMOSOME DISORDERS the Term, ‘Rare Chromosome Disorders’, Refers to Conditions Which
    INFORMATION SHEET Page 1 COMPLEX LEARNING DIFFICULTIES AND DISABILITIES RESEARCH PROJECT (CLDD) RARE CHROMOSOME DISORDERS The term, ‘rare chromosome disorders’, refers to conditions which: 1. occur due to missing, duplicated or re-arranged chromosome material 2. have a low prevalence rate (thus not including chromosomal disorders such as Down syndrome). Chromosomes are structures found in the nuclei of cells in human bodies. Each chromosome contains thousands of genes which determine how we grow and develop. A typically developing person will have 23 pairs of chromosomes with one member of each pair being inherited from each parent, giving a total of 46 individual chromosomes. Two of these are the sex chromosomes which determine whether we are female (XX) or male (XY). The remaining 44 chromosomes are grouped in 22 pairs, numbered 1 to 22. The arms of a chromosome are called ‘p’ (shorter arm) and ‘q’ (long arm) (see Figure 1); these arms are separated into numerical regions, which in turn are divided into bands and sub-bands. p q Figure 1. Diagram of a chromosome Individually, rare chromosome disorders are extremely uncommon, with some being actually unique; however, collectively rare chromosome disorders make up at least one in every 200 live births, with babies either having symptoms from birth or early childhood, or being carriers of a chromosomal abnormality and experiencing the effects when they try to reproduce in later life (Searle and Hultén, 2009). Recent advances in technology and medical expertise has meant that chromosomes can be viewed at ever increasing magnifications, which is resulting in the detection of more complex defects.
    [Show full text]
  • Chromosome 18
    Chromosome 18 Description Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 18, one copy inherited from each parent, form one of the pairs. Chromosome 18 spans about 78 million DNA building blocks (base pairs) and represents approximately 2.5 percent of the total DNA in cells. Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 18 likely contains 200 to 300 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body. Health Conditions Related to Chromosomal Changes The following chromosomal conditions are associated with changes in the structure or number of copies of chromosome 18. Distal 18q deletion syndrome Distal 18q deletion syndrome occurs when a piece of the long (q) arm of chromosome 18 is missing. The term "distal" means that the missing piece (deletion) occurs near one end of the chromosome arm. The signs and symptoms of distal 18q deletion syndrome include delayed development and learning disabilities, short stature, weak muscle tone ( hypotonia), foot abnormalities, and a wide variety of other features. The deletion that causes distal 18q deletion syndrome can occur anywhere between a region called 18q21 and the end of the chromosome. The size of the deletion varies among affected individuals. The signs and symptoms of distal 18q deletion syndrome are thought to be related to the loss of multiple genes from this part of the long arm of chromosome 18.
    [Show full text]
  • A Randomized Controlled Trial of Intranasal Oxytocin in Phelan-Mcdermid Syndrome
    A Randomized Controlled Trial of Intranasal Oxytocin in Phelan-McDermid Syndrome Jarrett Fastman Icahn School of Medicine at Mount Sinai Jennifer Foss-Feig Icahn School of Medicine at Mount Sinai Yitzchak Frank Icahn School of Medicine at Mount Sinai Danielle Halpern Icahn School of Medicine at Mount Sinai Hala Harony-Nicolas Icahn School of Medicine at Mount Sinai Christina Layton Icahn School of Medicine at Mount Sinai Sven Sandin Icahn School of Medicine at Mount Sinai Paige Siper Icahn School of Medicine at Mount Sinai Lara Tang Icahn School of Medicine at Mount Sinai Pilar Trelles Icahn School of Medicine at Mount Sinai Jessica Zweifach Icahn School of Medicine at Mount Sinai Joseph D. Buxbaum Icahn School of Medicine at Mount Sinai Alexander Kolevzon ( [email protected] ) Icahn School of Medicine at Mount Sinai https://orcid.org/0000-0001-8129-2671 Research Article Keywords: Phelan-McDermid syndrome, PMS, shank3, autism spectrum disorder, ASD, oxytocin Posted Date: March 5th, 2021 Page 1/24 DOI: https://doi.org/10.21203/rs.3.rs-268151/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/24 Abstract Background Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by haploinsuciency of the SHANK3 gene and characterized by global developmental delays, decits in speech and motor function, and autism spectrum disorder (ASD). Monogenic causes of ASD such as PMS are well suited to investigations with novel therapeutics, as interventions can be targeted based on established genetic etiology. While preclinical studies have demonstrated that the neuropeptide oxytocin can reverse electrophysiological, attentional, and social recognition memory decits in Shank3-decient rats, there have been no trials in individuals with PMS.
    [Show full text]
  • 22Q13.3 Deletion Syndrome
    22q13.3 deletion syndrome Description 22q13.3 deletion syndrome, which is also known as Phelan-McDermid syndrome, is a disorder caused by the loss of a small piece of chromosome 22. The deletion occurs near the end of the chromosome at a location designated q13.3. The features of 22q13.3 deletion syndrome vary widely and involve many parts of the body. Characteristic signs and symptoms include developmental delay, moderate to profound intellectual disability, decreased muscle tone (hypotonia), and absent or delayed speech. Some people with this condition have autism or autistic-like behavior that affects communication and social interaction, such as poor eye contact, sensitivity to touch, and aggressive behaviors. They may also chew on non-food items such as clothing. Less frequently, people with this condition have seizures or lose skills they had already acquired (developmental regression). Individuals with 22q13.3 deletion syndrome tend to have a decreased sensitivity to pain. Many also have a reduced ability to sweat, which can lead to a greater risk of overheating and dehydration. Some people with this condition have episodes of frequent vomiting and nausea (cyclic vomiting) and backflow of stomach acids into the esophagus (gastroesophageal reflux). People with 22q13.3 deletion syndrome typically have distinctive facial features, including a long, narrow head; prominent ears; a pointed chin; droopy eyelids (ptosis); and deep-set eyes. Other physical features seen with this condition include large and fleshy hands and/or feet, a fusion of the second and third toes (syndactyly), and small or abnormal toenails. Some affected individuals have rapid (accelerated) growth.
    [Show full text]
  • First Case Report of Maternal Mosaic Tetrasomy 9P Incidentally Detected on Non-Invasive Prenatal Testing
    G C A T T A C G G C A T genes Article First Case Report of Maternal Mosaic Tetrasomy 9p Incidentally Detected on Non-Invasive Prenatal Testing Wendy Shu 1,*, Shirley S. W. Cheng 2 , Shuwen Xue 3, Lin Wai Chan 1, Sung Inda Soong 4, Anita Sik Yau Kan 5 , Sunny Wai Hung Cheung 6 and Kwong Wai Choy 3,* 1 Department of Obstetrics and Gynaecology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China; [email protected] 2 Clinical Genetic Service, Hong Hong Children Hospital, Ngau Tau Kok, Hong Kong, China; [email protected] 3 Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Hong Kong, China; [email protected] 4 Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China; [email protected] 5 Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Sai Ying Pun, Hong Kong, China; [email protected] 6 NIPT Department, NGS Lab, Xcelom Limited, Hong Kong, China; [email protected] * Correspondence: [email protected] (W.S.); [email protected] (K.W.C.); Tel.: +852-25-957-359 (W.S.); +852-35-053-099 (K.W.C.) Abstract: Tetrasomy 9p (ORPHA:3390) is a rare syndrome, hallmarked by growth retardation; psychomotor delay; mild to moderate intellectual disability; and a spectrum of skeletal, cardiac, renal and urogenital defects. Here we present a Chinese female with good past health who conceived her pregnancy naturally. Non-invasive prenatal testing (NIPT) showed multiple chromosomal aberrations were consistently detected in two sampling times, which included elevation in DNA from Citation: Shu, W.; Cheng, S.S.W.; chromosome 9p.
    [Show full text]