The Struthiopteris Spicant (Blechnaceae, Polypodiopsida) Complex in Western Europe, with Proposals for Taxonomic and Nomenclatural Changes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California's Native Ferns
CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image. -
Lista Anotada De La Taxonomía Supraespecífica De Helechos De Guatemala Elaborada Por Jorge Jiménez
Documento suplementario Lista anotada de la taxonomía supraespecífica de helechos de Guatemala Elaborada por Jorge Jiménez. Junio de 2019. [email protected] Clase Equisetopsida C. Agardh α.. Subclase Equisetidae Warm. I. Órden Equisetales DC. ex Bercht. & J. Presl a. Familia Equisetaceae Michx. ex DC. 1. Equisetum L., tres especies, dos híbridos. β.. Subclase Ophioglossidae Klinge II. Órden Psilotales Prantl b. Familia Psilotaceae J.W. Griff. & Henfr. 2. Psilotum Sw., dos especies. III. Órden Ophioglossales Link c. Familia Ophioglossaceae Martinov c1. Subfamilia Ophioglossoideae C. Presl 3. Cheiroglossa C. Presl, una especie. 4. Ophioglossum L., cuatro especies. c2. Subfamilia Botrychioideae C. Presl 5. Botrychium Sw., tres especies. 6. Botrypus Michx., una especie. γ. Subclase Marattiidae Klinge IV. Órden Marattiales Link d. Familia Marattiaceae Kaulf. 7. Danaea Sm., tres especies. 8. Marattia Sw., cuatro especies. δ. Subclase Polypodiidae Cronquist, Takht. & W. Zimm. V. Órden Osmundales Link e. Familia Osmundaceae Martinov 9. Osmunda L., una especie. 10. Osmundastrum C. Presl, una especie. VI. Órden Hymenophyllales A.B. Frank f. Familia Hymenophyllaceae Mart. f1. Subfamilia Trichomanoideae C. Presl 11. Abrodictyum C. Presl, una especie. 12. Didymoglossum Desv., nueve especies. 13. Polyphlebium Copel., cuatro especies. 14. Trichomanes L., nueve especies. 15. Vandenboschia Copel., tres especies. f2. Subfamilia Hymenophylloideae Burnett 16. Hymenophyllum Sm., 23 especies. VII. Órden Gleicheniales Schimp. g. Familia Gleicheniaceae C. Presl 17. Dicranopteris Bernh., una especie. 18. Diplopterygium (Diels) Nakai, una especie. 19. Gleichenella Ching, una especie. 20. Sticherus C. Presl, cuatro especies. VIII. Órden Schizaeales Schimp. h. Familia Lygodiaceae M. Roem. 21. Lygodium Sw., tres especies. i. Familia Schizaeaceae Kaulf. 22. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
NEWSLETTER December 2017 Previous Issue: September 2017 ISSN 1171-9982
NEWSLETTER December 2017 Previous issue: September 2017 ISSN 1171-9982 From the President Articles for web site The October WBS meeting gave me much hope for the future of botanical We welcome articles for research in New Zealand. We were lucky to hear talks from two of our 2016 consideration for inclusion on WBS prizewinners. Jubilee Award winner, Stacey Bryan, on behalf of Hannah our web site: Buckley, gave a fascinating talk on pīngao, which wove in aspects of genetics, www.wellingtonbotsoc.org.nz culture, conservation and ecology. Grants to Graduate Students prizewinner, Nathaniel Walker-Hale, gave a very polished presentation on the evolution of salt Please send your article to: tolerance and betalain pigments. Nathaniel was recently awarded a Woolf Fisher Richard Herbert Scholarship to continue his studies with a PhD at the University of Cambridge e-mail [email protected] in the UK. Lastly, Jane Humble gave an insightful talk into botanical art and brought along some of her own artworks for us to admire. The talks stimulated Writing for the Bulletin much discussion. I had several members tell me how much they enjoyed the Do you have a botanical observation, evening in the days afterwards. Thanks to all our speakers, and to Sunita Singh anecdote, or insight that you could for organising our meeting programme. share with others in BotSoc? If so, Lara Shepherd, President please consider contributing it to the Wellington Botanical Society New members Bulletin. There is still plenty of space We welcome the following: in the next issue. For more details and Barbara Hammonds, Tom Mayo, Sarah Wilcox, Joyce Wilson. -
Adansonia 2020 42 18 Directeur De La Publication / Publication Director: Bruno David Président Du Muséum National D’Histoire Naturelle
adansonia 2020 42 18 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Réalisée à partir des Figures de -
New Combinations in Struthiopteris Spicant for the European Flora
Phytotaxa 302 (2): 198–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Correspondence ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.302.2.11 New combinations in Struthiopteris spicant for the European flora PAWEL WASOWICZ1*, JOSE MARIA GABRIEL Y GALAN2 & RUBEN PINO PEREZ3 1 Icelandic Institute of Natural History, Borgir vid Nordurslod, 600 Akureyri, Iceland. e-mail: [email protected] 2 Plant Sciences (Botany) Department, Faculty of Biology, Universidad Complutense. Avda. Jose Antonio Nováis, 12. 28040 Madrid, Spain. e-mail: [email protected] 3 Plant Science and Soil Science Department, Faculty of Science, Universidad de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Ponteve- dra, Spain. e-mail: [email protected] *corresponding author Delimitation of genera in Blechnaceae Newman (1844: 8), a subcosmopolitan fern family with ca. 250 species, has remained uncertain for a long time. During the last decade, evidence has been accumulating about the polyphyletism within Blechnum Linnaeus (1753: 1077) (e.g. Shepherd et al. 2007, Rothfels et al. 2012, Gabriel y Galán et al. 2013, Perrie et al. 2014). Recent molecular studies (Gasper et al. 2016a) lead to an updated classification attempting to put morphological characters into a natural, phylogenetic relation (Gasper et al. 2016b). Because of these changes, the species most people associate with the genus Blechnum, B. spicant (Linnaeus 1753: 1066) Roth (1794: 56), is now treated under Struthiopteris Scopoli (1754: 25). Struthiopteris spicant (L.) F.W.Weiss (1770: 287), a widely distributed plant in the Northern Hemisphere, is characterized by having strongly dimorphic fronds (Lawalrée 1964), but it shows certain morphological variability that has led to the recognition of several forms, which have been taxonomically treated in several ways, the varietal rank being the currently accepted. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Ferns of the National Forests in Alaska
Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p. -
TO KNOW in Re On
TO KNOW in re on FEDERAL COOPERATIVE EXTENSION SERVICE OREGON STATE COLLEGE,CORVALLIS Cooperative Extension work in Agriculture and Home Economics, F. E. Price, director. Oregon State College and the United States Department of Agriculture cooperating. Printed and distributed in furtherance of Acts of Congress of May 8 and June 30, 1914. Extension Bulletin 785 September 1959 FERN TERMS Evergreen. Said of plants whose leaves re- Pinna. A primary division of a fern leaf. main green at least until new ones are formed, (The plural of pinna is pinnae.) and of leaves that remain green more than a year. Pinnule. A secondary division of a fern leaf. Fertile leaf. A leaf that bears fruit dots or spore cases. Rhizoid. Simple hair-like structures of a Frond. The leaf of a fern. prothallium, functioning as roots. Fruit band. A line of spore cases, instead Rhizone. A somewhat horizontal and us- of fruit dots, appearing on the margin or un- ually elongated creeping subterranean stem. der surface of fertile leaves of some ferns. Rootstock. Rhizome. Stem. Fruit dots. Small groups of spore cases appearing on the underside of fertile leaves. Sorus. A cluster of sporangia. (Plural of Habitat. The typicalsituation under sorus is son.) which a plant grows. Sporangia. (Spore cases.) The vessels Indusium. The shield-like cover of a where spores are formed. sorus. Spore. The small nonsexual fruit of the Leaflet. One of the divisions of a com- fern. A cell that functions as a seed. pound leaf. Midvein. The central and most prominent Stipe. Leafstalk. vein of a pinna or pinnule. -
An Illustrated Key to the Ferns of Oregon
AN ABSTRACT OF THE THESIS OF Helen Patricia O'Donahue Pembrook for the Master of Arts (Name) (Degree) Systematic Botany (Major) Date thesis is presented March 8, 1963 Title AN ILLUSTRATED KEY TO THE FERNS OF OREGON Abstract approved IIIII (Major professor) The purpose of the work is to enable students of botany to identify accurately Oregon ferns, both as living plants and as dried speci- mens. Therefore, it provides vegetative keys to the families, genera and species of the ferns (Class FILICINAE) found in Oregon. Correct names have been determined using the latest available information and in accordance with 1961 edition of the International Code of Botan- ical Nomenclature. The synonomy, a description, and original draw- ings of each species and subspecific taxon are included. An illustrated glossary and a technical glossary have been prepared to explain and clarify the descriptive terms used. There is also a bibliography of the literature used in the preparation of the paper. The class FILICINAE is represented in Oregon by 4 families, 20 genera, 45 or 46 species, 4 of which are represented by more than one subspecies or variety. One species, Botrychium pumicola Coville, is endemic. The taxa are distributed as follows: OPHIO- GLOSSACEAE, 2 genera: Botrychium, 7 species, 1 represented by 2 subspecies, 1 by 2 varieties; Ophioglossum, 1 species. POLYPODI- ACEAE, 15 genera: Woodsia., 2 species; Cystopteris, 1 species; Dryopteris, 6 species; Polystichum, 5 species, 1 represented by 2 distinct varieties; Athyrium, 2 species; Asplenium, 2 species; Stru- thiopteris, 1 species; Woodwardia, 1 species; Pitrogramma, 1 spe- cies; Pellaea, 4 species; Cheilanthes, 3 or 4 species; Cryptogramma, 1 species; Adiantum, 2 species; Pteridium, 1 species; Polypodium, 2 species, 1 represented by 2 varieties. -
Acta Botanica Brasilica - 33(3): 412-424
Acta Botanica Brasilica - 33(3): 412-424. July-September 2019. doi: 10.1590/0102-33062018abb0321 Spore diversity among species of Blechnaceae in the Atlantic Forest Dilma Melo da Silva1 , Lana da Silva Sylvestre2 , Cláudia Barbieri Ferreira Mendonça3 and Vania Gonçalves-Esteves3* Received: September 23, 2018 Accepted: March 8, 2019 . ABSTRACT The palynological diversity of Blechnaceae in the Atlantic Forest was investigated. While the monophyletic family belongs to the group of leptosporangiate ferns, a new classification proposed by recent phylogenetic study reorganizes the family and adds new genera. To expand palynological knowledge of the group, the spore morphology of 23 species and a hybrid, distributed among 10 genera, was described. Material from herbarium collections were submitted to acetolysis and mounted on slides, with subsequent statistical analysis of spore measurements. Photomicrographs of the material were taken under both light and scanning electron microscopy. Perine ornamentation varied among psilate, rugulate and scabrate; granules and gemmae were present along with thin, smooth cristae. Species of Blechnum and Austroblechnum exhibited the greatest diversity. The attributes of the spores obtained here were able to differentiate the analyzed species, although the spore morphology of some taxa was found to be very similar. Multivariate analysis assessed the relevance of quantitative data for differentiating the taxa. Keywords: Austroblechnum, Blechnum, spore, multivariate analysis, palynology Cerrado: Austroblechnum (six spp.), Blechnum (10 spp.), Introduction Cranfillia (two spp.), Lomaria, Lomaridium, Lomariocycas, Neoblechnum (one sp. each), Parablechnum (three spp.), Blechnaceae is a monophyletic family of leptosporangiate Sapichlaena and Telmatoblechnum (one sp. each) (Blechnaceae ferns (Smith et al. 2006; Rothfels et al. 2012; Gasper et al. -
Journal of Ethnopharmacology Antiinflammatory And
Journal of Ethnopharmacology 125 (2009) 102–107 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Antiinflammatory and antinociceptive activities of Blechnum occidentale L. extract Fabiana Regina Nonato a, Tais Adelita Almeida Barros a, Angélica Maria Lucchese b, Carlos Eduardo Cordeiro Oliveira b, Ricardo Ribeiro dos Santos a,c, Milena Botelho Pereira Soares a,c, Cristiane Flora Villarreal a,d,∗ a Centro de Pesquisas Gonc¸ alo Moniz, Fundac¸ ão Oswaldo Cruz, Rua Waldemar Falcão 121, CEP 40296-710 Salvador, Bahia, Brazil b Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, CEP 44036-900 Feira de Santana, Bahia, Brazil c Hospital São Rafael, Av. São Rafael 2152, CEP 41253-190 Salvador, Bahia, Brazil d Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Geremoabo s/n, CEP 40170-290 Salvador, Bahia, Brazil article info abstract Article history: Aim of study: Blechnum occidentale L. is a terrestrial fern that ranges from the United States to South Amer- Received 5 March 2009 ica, and is employed in Brazilian folk medicine. In the present study we investigated the antinociceptive Received in revised form 29 May 2009 and antiinflammatory activities of the methanolic extract of Blechnum occidentale L. (MEB) in animal mod- Accepted 5 June 2009 els of pain and inflammation to support its medicinal use in treatment of inflammatory and pulmonary Available online 12 June 2009 diseases, urinary infections and liver diseases. Materials and methods: The antinociceptive activity of MEB was evaluated using the writhing, formalin, Keywords: and tail flick tests.