Reproducing Kernel Hilbert Algebras on Compact Abelian Groups
REPRODUCING KERNEL HILBERT ALGEBRAS ON COMPACT ABELIAN GROUPS SUDDHASATTWA DAS AND DIMITRIOS GIANNAKIS Abstract. We describe the construction of a nested family of reproducing kernel Hilbert spaces ∗ Hτ , τ > 0, on a compact abelian group G, which also have a unital Banach -algebra structure under the pointwise product and complex conjugation of functions. For any τ > 0, Hτ is dense in the space of continuous functions on G, and has an explicit orthonormal basis consisting of suitably scaled characters, satisfying a convolution criterion. In the case of the circle, G = S1, these spaces are induced from a fractional diffusion semigroup, generated by the p/2-th power of the Laplacian with 0 <p< 1. In higher-dimensional tori, the reproducing kernels of Hτ have the structure of product kernels built from the one-dimensional case. Aspects of the spectra and state spaces of Hτ are also studied. In particular, the spectrum of Hτ is shown to be homeomorphic to G, analogously ∗ to the corresponding property of the C -algebra of continuous functions on G. 1. Introduction and statement of main results In many areas of mathematics and statistics, such as functional analysis, harmonic analysis, analysis on manifolds, and ergodic theory, one is interested in the analysis and approximation of linear operators on functions. In these and many other contexts, it is desirable that the function space employed be endowed with properties, such as a norm, inner product, and algebraic product, which are compatible with the structure of the underlying space and the codomain. For example, if (X, Σ,µ) is a measure space it is natural to consider the Lp(µ) spaces of equivalence classes of complex-valued functions on X.
[Show full text]