Contribution À La Conception Et À L'optimisation Thermodynamique D'une Microcentrale Solaire Thermo-Électrique

Total Page:16

File Type:pdf, Size:1020Kb

Contribution À La Conception Et À L'optimisation Thermodynamique D'une Microcentrale Solaire Thermo-Électrique Contribution à la conception et à l’optimisation thermodynamique d’une microcentrale solaire thermo-électrique Antoine Mathieu To cite this version: Antoine Mathieu. Contribution à la conception et à l’optimisation thermodynamique d’une mi- crocentrale solaire thermo-électrique. Autre. Université de Lorraine, 2012. Français. NNT : 2012LORR0027. tel-01749207 HAL Id: tel-01749207 https://hal.univ-lorraine.fr/tel-01749207 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm U.F.R. Sciences et Techniques de la Matière et des Procédés École Doctorale EMMA Département de Mécanique et Énergétique Thèse proposée au réquisit du titre de Docteur de l'Université de Lorraine en Mécanique et Énergétique par Antoine MATHIEU Contribution à la conception et à l'optimisation thermodynamique d'une Microcentrale Solaire Thermo-électrique Soutenue publiquement le 23 Mai 2012 Membres du jury : Rapporteurs : M. Abdelhamid BELGHIT Professeur, Université de La Rochelle M. Giampaolo MANFRIDA Professeur, Università degli Studi di Firenze Examinateurs : Mme Monica COSTEA Professeur, Universitatea Politehnica din Bucuresti Mme Lavinia GROSU Maître de Conférence, Université de Paris Ouest M. David GUALINO Innovation Manager, Schneider Electric Industries Directeurs de thèse : M. Michel FEIDT Professeur, Université de Lorraine (directeur) M. Pierre ROCHELLE Professeur, Université de Paris Ouest (co-directeur) Laboratoire d’Énergétique et de Mécanique Théorique et Appliquée 54500 Vandœuvre-Lès-Nancy retour à la Table des Matières 2 La nature est invisible à l’œil nu Anaxagore retour à la Table des Matières 3 retour à la Table des Matières 4 Pour Anouk et sa petite sœur Lila en pensant à Marguerite et Léon Cécile et Louis retour à la Table des Matières 5 retour à la Table des Matières 6 Remerciements Ce travail a été réalisé dans le cadre d'un contrat conventionné Cifre. Merci donc à l'ANRT, qui a financé ce contrat. Merci également à l'Ademe, qui soutient le projet Microsol depuis ses débuts, et a contribué en cela à la consistance de mes travaux et leur relation étroite avec l'application pratique au niveau industriel. Je tiens à remercier particulièrement M. Frédéric VAILLANT, manager d'équipes au sein du pôle Stratégie et Innovation de Schneider Electric Industries de Grenoble, de m'avoir recruté pour ce contrat, et d'avoir encouragé mes travaux en soutenant le projet Microsol. Une reconnaissance distinguée doit être formulée à l'égard de M. Gilles VERMOT-DESROCHES, responsable du programme BipBop de Schneider Electric, pour avoir soutenu le projet Microsol, avec le concours de la Fondation Schneider Electric. Je remercie spécialement M. David GUALINO, chef de l'unité Mécatronique du pôle Stratégie et Innovation de Schneider Electric, à l'origine du projet Microsol, qui a participé à mon recrutement, ainsi que M. Benoit GRAPPE, chef du projet. Remerciements distingués, à M. Abdelhamid BELGHIT, Professeur à l'Université de La Rochelle et M. Giampaolo MANFRIDA, Professeur, à l'Università degli Studi di Firenze, d'avoir accepté le rôle de rapporteur pour ma thèse, ainsi qu'à Mme Monica COSTEA, Professeur à l'Universitatea Politehnica din Bucuresti, de me faire l'honneur de participer au jury. Remerciements déférents à M. Michel FEIDT, Professeur à l'Université de Lorraine, et M. Pierre ROCHELLE, Professeur à l'Université de Paris Ouest, qui ont assuré la co-direction de ma thèse avec constance, exigence et bienveillance, ainsi qu'à Mme Lavinia GROSU, Maître de Conférence à l'Université de Paris Ouest qui a participé activement à l'encadrement de mes travaux. Merci aux entreprises qui participent, ou on participé au projet Microsol et apporté de la matière d’œuvre à mes réflexions : ACSystèmes, BATT, CEDRAT, Défi Systèmes, Exosun, Mécachrome, SAED et Stiral. Merci encore à Mme Grâce GANDANEGARA, MM. Jacques ECRABEY, John GRAHAM et Vincent SCHNEIDER, œuvrant au développement du projet Microsol au sein de Schneider Electric, ainsi qu'à Mme Maryse CHASSIER, MM. Charles BLONDEL, Albert CHANSAVANG, Gilles CORTESE, Dimitrios LADAS et Roland MOUSSANET de l'équipe Mécatronique, pour leur bonne humeur, leur esprit d'ouverture, leur sens aigu de l'échange, de la collaboration et du brassage d'idées, qui entretiennent une ambiance de travail dynamique et motivante. retour à la Table des Matières 7 retour à la Table des Matières 8 Contribution à la conception et à l'optimisation d'une micro-centrale solaire thermo-électrique Résumé En ce début de millénaire 1,3 Milliard d'humains, parmi les plus démunis de la planète, vivent dans des sites isolés et ne bénéficient pas de réseaux de distribution d'énergie. Leur besoin en électricité est modeste, mais important en terme d'usages : accès aux soins médicaux et à l'instruction, communication, développement d'économies locales. C'est face à ce constat que Schneider Electric Industries relève, depuis 2009, le défi de concevoir et réaliser des micro-centrales solaires thermodynamiques, concurrentielles à d'autres solutions, pour fournir à ces populations une énergie électrique fiable et respectueuse de l'environnement. Inscrit dans le cadre de ce projet, le présent travail – réalisé en Cifre – est séquencé par l'évolution industrielle du projet. Dans un premier temps, un État de l'Art, étendu à une analyse de détail, a contribué à privilégier certains choix technologiques : Capteurs solaires à concentration, stockage thermique à chaleur sensible et moteur de Stirling. Dans un second temps, une étude thermodynamique préliminaire a permis d'évaluer le dimensionnement d'éléments clefs du système : Champ de captage solaire et stockage thermique. En complément une étude de sensibilité paramétrique du dimensionnement et des performances à divers facteurs de pertes énergétiques a souligné les points durs techniques et participé à l'orientation des travaux de conception. Enfin, l'analyse exergétique de fonctionnement de capteurs solaires et d'un moteur de Stirling en régimes dynamiques stationnaires proposent des bases pour l'optimisation de contrôle et commande, visant à accroitre les performances énergétiques du système et favoriser sa viabilité thermoéconomique. retour à la Table des Matières 9 retour à la Table des Matières 10 Table des matières Introduction générale 21 Chapitre 1 État de l'Art 23 1.1 Introduction 23 1.2 Généralités 24 1.2.1 Le solaire et la thermodynamique : quelques éléments d'histoire 24 1.2.2 Le potentiel de la ressource solaire 30 1.3 Centrales solaires thermo-électriques 32 1.3.1 Centrales à miroirs héliostatiques et tours thermiques 32 1.3.2 Centrales à concentrateurs cylindro-paraboliques 33 1.3.3 Systèmes à Parabole/Stirling 35 1.3.4 Cheminée solaire 36 1.3.5 Micro-systèmes expérimentaux 37 1.3.6 Quelques chiffres 40 Chapitre 2 Composants technologiques potentiels pour un projet de microcentrale 41 2.1 Introduction 41 2.2 Réception solaire thermique 42 2.2.1 Les absorbeurs solaires 42 2.2.2 La réception directe 44 2.2.2.1 Par capteurs simples 44 2.2.2.2 Par capteurs évolués 44 2.2.3 La réception à concentration 45 2.2.3.1 Concentrateurs à une direction 46 2.2.3.2 Concentration à deux axes 48 2.2.4 Conclusion sur la réception solaire 50 2.3 Conversion thermomécanique 51 2.3.1 Moteurs à flux continu : turbines 51 2.3.1.1 Turbines à vapeur et assimilés (cycle de Hirn) 51 2.3.1.2 Turbine à cycle de Brayton-Joule 54 2.3.2 Machines à volumétrie alternative 55 2.3.2.1 Moteur d'Ericsson 56 2.3.2.2 Moteur de Stirling 57 retour à la Table des Matières 11 2.3.3 Conclusion quant aux machines 60 2.4 Transport et Stockage de la chaleur 60 2.4.1 Fluides caloporteurs 60 2.4.1.1 L'eau 61 2.4.1.2 Polymères glycolés 61 2.4.1.3 Huiles minérales 61 2.4.1.4 Huiles silicones 62 2.4.1.5 Huiles synthétiques 62 2.4.1.6 Conclusion quant aux caloporteurs 63 2.4.2 Stockage thermique 64 2.4.2.1 Accumulation par chaleur sensible 64 2.4.2.2 Stockage thermique direct, indirect et semi-direct 65 2.4.2.3 Accumulation par chaleur latente 66 2.4.2.4 Conclusion sur le stockage thermique 67 2.5 Conclusions du chapitre : vers une architecture du système 67 Chapitre 3 Prédimensionnement de la microcentrale solaire thermo-électrique 69 3.1 Introduction 69 3.2 Modélisation des sous-systèmes 69 3.2.1 Modèles de capteurs solaires 69 3.2.2 Modélisation du stockage thermique 71 3.2.3 Auto-consommations 75 3.2.4 Génératrice 75 3.2.5 Modèle statique de moteur de Stirling 76 3.2.5.1 Rendement thermostatique du cycle idéal avec régénération thermique imparfaite 76 3.2.5.2 Rendement du cycle endo-irréversible avec régénération thermique imparfaite, pertes thermiques et pertes mécaniques 77 3.3 Modélisation du système 79 3.3.1 Schéma thermique global, conditions de fonctionnement.
Recommended publications
  • A Study on Frequency Band of Stirling Engines for Buildings
    ESL-IC-06-11-279 ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-5-4 A Study on Design Parameters of Stirling Engines for Buildings1 Guozhong Ding Suyi Huang Chunping Zhang Xinghua Hu Xiaoqing Zhang Fangzhong Guo School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan,Hubei,430074,P.R.China [email protected] Abstract:One of the most promising projects in the engine was considered to be the cheapest[1]. Stirling application of combined heat and power(CHP) lies in engines are very applicable to residential buildings, energy production for buildings. Stirling engines are especially because the higher electricity/heat very applicable to residential buildings, especially efficiency. Commercially, small-scale fuel cells are because of the higher electricity/heat efficiency. A in a development phase, whilst a small number of literature review on stirling engines is first provided stirling engine units have been deployed on a and a number of research works on the development demonstration basis and developers are preparing and applications of Stirling engines are discussed. to manufacture the product on a larger scale. Then according to buildings’ energy consumption, Electrical efficiency is roughly 15% at the design relevant output of power density of Stirling engines is point, and decreases as power output decreases. estimated. From the results, the design parameters of The objective of this article is to provide a basic Stirling engines are derived and the temperature review of existing literature on Stirling engines and difference on frequency and performance of Stirling low temperature differential Stirling engine engines is also discussed.1 technology.
    [Show full text]
  • Conceptual and Basic Design of a Stirling Engine Prototype for Electrical Power Generation Using Solar Energy
    CONCEPTUAL AND BASIC DESIGN OF A STIRLING ENGINE PROTOTYPE FOR ELECTRICAL POWER GENERATION USING SOLAR ENERGY Constantino Roldan Pedro Pieretti Mechanical Engineer Department of Energy Conversion Universidad Simón Bolívar Universidad Simón Bolívar Caracas, Miranda, Venezuela Caracas, Miranda, Venezuela Luis Rojas-Solórzano Department of Energy Conversion Universidad Simón Bolívar Caracas, Miranda, Venezuela ABSTRACT Pow Power The research consisted in a conceptual and basic design of Q Heat a prototype Stirling engine with the purpose of taking S Stroke advantage of the solar radiation to produce electric energy. The T Temperature work began with a bibliography review covering aspects as V Volume history, basic functioning, design configurations, applications W work and analysis methods, just to continue with the conceptual f Frequency design, where the prototype specifications were determined. k Gas thermal conductivity Finally, a basic dimensioning of the important components as m Mass heat exchangers (heater, cooler, and regenerator), piston, p Pressure displacer and solar collector was elaborated. The principal conclusions were that the different analysis methods had Subscripts dissimilitude among their results; in this sense, a construction C Compression of the prototype is necessary for the understanding of the E Expansion complex phenomena occurring inside the engine. DC Displacement compression DE Displacement expansion DP Displacement piston INTRODUCTION MC Dead compression As a safer alternative to the steam machines of XIX ME Dead expansion century, Robert Stirling invented the “Stirling Engine”. The problem was that the steam boilers tend to explode due to the Greek symbols high temperatures and pressures in addition to the deficiency in α Crankshaft turn angle the metallurgy at the time.
    [Show full text]
  • Stirling Engine Fueled by Neglected Heat Presentation
    Design and Analysis of a Stirling Engine Powered by Neglected Waste Heat Energy and the Environment Bass Connections Professors: Dr. Emily Klein, Ph.D and Dr. Josiah Knight, Ph.D Project Team: Chris Orrico, Alejandro Sevilla, Sam Osheroff, Anjali Arora, Kate White, Katie Cobb, Scott Burstein, Edward Lins 26th April 2020 Stirling 1 Table of Contents Acknowledgements 6 Executive Summary 7 Introduction 7 Technical Design 8 3.1 Configuration Selection 8 3.1.1 Summary of Design Approach 9 3.1.2 Theory 10 3.1.2.1 Thermodynamic Principle 10 3.1.2.2 Dynamic Principle 11 3.1.2.3 Electromagnetic Principle and Damping 11 3.1.3 General Engine Ideation 12 3.2 Analysis and Computational Modelling 13 3.2.1 Dynamic & Thermodynamic Model: MATLAB 13 3.2.2 Motion Analysis: SolidWorks 14 3.2.3 Static Spring-Mass System Linear Geometry Calculation 16 3.2.4 FEA & Thermal Studies 19 3.3 Engine Design Prototype 20 3.4 Manufacturing 21 3.4.1 Assembly Procedure 21 3.4.2 Technical Drawings 21 3.4.3 Process Failure Mode and Effects Analysis 22 3.5 Testing, evaluation and results 22 3.5.1 Test Setup 22 3.5.1.1 Test Shield 22 3.5.1.2 Cooling coil 22 3.5.1.3 Heating coil 23 3.5.1.4 Instrumentation and measurement 23 3.5.2 Testing Approach 24 3.5.3 Expected Results 25 3.6 Scaling 26 3.6.1 Power Output 26 Stirling 2 3.6.2 Beale and West Estimates 26 3.6.3 Manufacturing Cost 27 3.6.3.1 Increase in Part Size 27 3.6.3.2 Volume Discounts 27 3.6.3.3 Machining Costs 27 3.6.3.4 Automation of Production 28 Engine Applications 28 4.1 Discussion of target markets: reducing unused
    [Show full text]
  • Review of Existing Models for Stirling Engine Performance Prediction and the Paradox Phenomenon of the Classical Schmidt Isothermal Model
    International Journal of Energy and Sustainable Development Vol. 1, No. 1, 2016, pp. 6-12 http://www.aiscience.org/journal/ijesd Review of Existing Models for Stirling Engine Performance Prediction and the Paradox Phenomenon of the Classical Schmidt Isothermal Model Kwasi-Effah C. C. 1, *, Obanor A. I. 1, Aisien F. A.2, Ogbeide O.3 1Department of Mechanical Engineering, University of Benin, Benin City, Nigeria 2Department of Chemical Engineering, University of Benin, Benin City, Nigeria 3Department of Production Engineering, University of Benin, Benin City, Nigeria Abstract The Schmidt model is one of the classical methods used for developing Stirling engines. The Schmidt analysis is based on the isothermal expansion and compression of an ideal gas. However with the recent innovation in technology, the Schmidt analysis needs to be improved upon as this analysis has been found to include phenomenon which contradicts the real behavior of the Stirling engine. In this paper the Schmidt analysis used in the performance prediction of the gamma-type Stirling engine is derived and lapses in this model is identified orderly. Other popular models developed by various individuals including their assumptions and limitations are described in this paper. Keywords Stirling Engine, Thermodynamic Model, Schmidt Analysis, Performance Prediction Received: July 18, 2016 / Accepted: August 3, 2016 / Published online: August 19, 2016 @ 2016 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. http://creativecommons.org/licenses/by/4.0/ The equation was found by Beale to apply roughly to various 1. Introduction kinds and sizes of Stirling engines for which information were accessible including free piston machines and those During the 1950’s, a number of studies were performed to with kinematic linkages.
    [Show full text]
  • Stirling Engine Design Manual
    r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine ........................ 58 5. Review of Stirling Engine Design Methods .............. 60 5.1 Stirling Engine Cycle Analysis .
    [Show full text]
  • Stirling Engine
    Stirling engine From Wikipedia, the free encyclopedia A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work.[1] The engine is like a steam engine in that all of the engine's heat flows in and out through the engine wall. This is traditionally known as an external combustion engine in contrast to an internal combustion engine where the heat input is by combustion of a fuel within the body of the working fluid. Unlike the steam engine's use of water in both its liquid and gaseous phases as the Alpha type Stirling engine. The working fluid, the Stirling engine encloses a fixed quantity of expansion cylinder (red) is permanently gaseous fluid such as air or helium. As in all heat maintained at a high temperature engines, the general cycle consists of compressing cool gas, while the compression cylinder heating the gas, expanding the hot gas, and finally cooling the (blue) is cooled. The passage gas before repeating the cycle. between the two cylinders contains the regenerator. Originally conceived in 1816 as an industrial prime mover to rival the steam engine, its practical use was largely confined to low-power domestic applications for over a century.[2] The Stirling engine is noted for its high efficiency, quiet operation, and the ease with which it can use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change.
    [Show full text]
  • Stirling Engine Design Manual
    https://ntrs.nasa.gov/search.jsp?R=19830022057 2020-03-21T03:20:43+00:00Z r .,_ DOE/NASA/3194---I NASA C,q-168088 Stirling Engine Design Manual Second Edition {NASA-CR-1580 88) ST_LiNG ,,'-NGINEDESI_ N83-30328 _ABU&L, 2ND _DIT.ION (_artini E[tgineeraag) 412 p HC Ai8/MF AO] CS_ laF Unclas G3/85 28223 Wi'liam R. Martini Martini Engineering January 1983 Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Grant NSG-3194 for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Office of Vehicle and Engine R&D DOE/NASA/3194-1 NASA CR-168088 Stirling Engine Design Manual Second Edition William R. Maltini Martir)i Engineering Ricllland Washif_gtotl Janualy 1983 P_epared Io_ National Aeronautics and Space Administlation Lewis Research Center Cleveland, Ollio 44135 Ulldel Giant NSG 319,1 IOI LIS DEF_ARIMENT OF: ENERGY Collsefvation aim Renewable E,lelgy Office of Vehicle arid Engir_e R&D Wasl_if_gton, D.C,. 20545 Ul_del IntefagencyAgleenlenl Dt: AI01 7/CS51040 TABLE OF CONTENTS I. Summary .............................. I 2. Introduction ......................... 3 2.22.1 WhatWhy Stirling?:Is a Stirl "in"g "En"i"g ne"? ". ". ". ............... 43 2.3 Major Types of Stirling Engines ................ 7 2,4 Overview of Report ...................... 10 3. Fully Described Stirling Engines .................. 12 3 • 1 The GPU-3 Engine m m • . • • • • • • • • . • • • . • • • • • • 12 3,2 The 4L23 Ergine ....................... 27 4. Partially Described Stirling Engines ................ 42 4.1 The Philips 1-98 Engine .................... 42 4.2 Miscellaneous Engines ..................... 46 4.3 Early Philips Air Engines ................... 46 4.4 The P75 Engine ........................ 58 4,5 The P40 Engine .......................
    [Show full text]
  • Investigation on Power Output of the Gamma-Configuration Low
    Renewable Energy 30 (2005) 465–476 www.elsevier.com/locate/renene Technical note Investigation on power output of the gamma-configuration low temperature differential Stirling engines Bancha Kongtragool, Somchai Wongwises à Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 91 Suksawas Road, 48, Thungkru, Bangmod, Bangkok 10140, Thailand Received 30 September 2003; accepted 10 June 2004 Abstract This paper provides a study on power output determination of a gamma-configuration, low temperature differential Stirling engine. The former works on the calculation of Stirling engine power output are discussed. Results from this study indicate that the mean pressure power formula is most appropriate for the calculation of a gamma-configuration, low temperature differential Stirling engine power output. # 2004 Elsevier Ltd. All rights reserved. Keywords: Stirling engine; Hot-air engine 1. Introduction Stirling engines are mechanical devices working theoretically on the Stirling cycle, or its modifications, in which compressible fluids, such as air, hydrogen, helium, nitrogen or even vapors, are used as working fluids. The Stirling engine offers the possibility of a high efficiency engine with lower exhaust emissions in comparison with the internal combustion engine. In principle, the Stirling engine is simple in design and construction, and can be operated easily. The earlier Stirling engines were highly inefficient. However, over time, a number of new Stirling engine models have been developed to improve the initial à Corresponding author. Tel.: +66-2-470-9115; fax: +66-2-470-9111. E-mail address: [email protected] (S. Wongwises).
    [Show full text]
  • Glossary of Combustion
    Glossary of Combustion Maximilian Lackner Download free books at Maximilian Lackner Glossary of Combustion 2 Download free eBooks at bookboon.com Glossary of Combustion 2nd edition © 2014 Maximilian Lackner & bookboon.com ISBN 978-87-403-0637-8 3 Download free eBooks at bookboon.com Glossary of Combustion Contents Contents Preface 5 1 Glossary of Combustion 6 2 Books 263 3 Papers 273 4 Standards, Patents and Weblinks 280 5 Further books by the author 288 4 Click on the ad to read more Download free eBooks at bookboon.com Glossary of Combustion Preface Preface Dear Reader, In this glossary, more than 2,500 terms from combustion and related fields are described. Many of them come with a reference so that the interested reader can go deeper. The terms are translated into the Hungarian, German, and Slovak language, as Central and Eastern Europe is a growing community very much engaged in combustion activities. Relevant expressions were selected, ranging from laboratory applications to large-scale boilers, from experimental research such as spectroscopy to computer simulations, and from fundamentals to novel developments such as CO2 sequestration and polygeneration. Thereby, students, scientists, technicians and engineers will benefit from this book, which can serve as a handy aid both for academic researchers and practitioners in the field. This book is the 2nd edition. The first edition was written by the author together with Harald Holzapfel, Tomás Suchý, Pál Szentannai and Franz Winter in 2009. The publisher was ProcessEng Engineering GmbH (ISBN: 978-3902655011). Their contribution is acknowledged. Recommended textbook on combustion: Maximilian Lackner, Árpád B.
    [Show full text]
  • Fabrication and Test of Gamma-Type Stirling Engine
    Fabrication and Test of Gamma-Type Stirling Engine Shung-Wen Kang, Meng-Yuan Kuo, Jian-You Chen, Wen-An Lu Department of Mechanical and Electro-Mechanical Engineering Tamkang University 151 Ying-Chuan Rd.,Tamsui, 25137, Taiwan, R.O.C. [email protected]. Abstract- In this investigation, a gamma-configuration Stirling In 1997, Iwamoto et al. [5] compared the performance of a engine is designed and constructed. The single and twin power LTD Stirling engine with a high-temperature differential cylinder engines are tested with air at atmospheric pressure by Stirling engine. They concluded that the LTD Stirling engine using an electric heater as a heat source. The engine is tested with effIciency at its rated speed was approximately 50 % of Carnot heater input of 156.3W, 187.6W, and 223.2W. Variations of effIciency. engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are In 2003, Kongtragool and Wongwises [6] made a presented. The results indicate that at the maximum heater input theoretical investigation on the Beale number for LTD Stirling of 223.2 W, the heater ternperature for single power cylinder and engines. The Beale number data for various engine twin power cylinder are 612°C and 574°C. The two engines specifIcations were collected from literatures. produce a maximum torque of 0.13 Nm at 405 rpm and 0.15 Nm In 2005, Kongtragool and Wongwises [7] investigated, at 412 rpm; a maximum shaft power of 5.73 W at 456 rpm and theoretically, the power output of the gamma-confIguration 6.47 W at 412 rpm; a maximum brake thermal efficiency of 2.57 LTD Stirling engine.
    [Show full text]
  • Indicated Diagrams of Low Temperature Differential Stirling Engines with Channel-Shaped Heat Exchangers
    Renewable Energy 103 (2017) 30e37 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Indicated diagrams of low temperature differential Stirling engines with channel-shaped heat exchangers Yoshitaka Kato Department of Mechanical and Energy System Engineering, Oita University, 700 Dan-noharu, Oita-shi, Oita, 870-1192, Japan article info abstract Article history: The low temperature differential Stirling engine with channel-shaped heat exchangers and regenerators Received 23 April 2016 achieved approximately 5 times the indicated power per a stroke volume of displacer of the cases using Received in revised form flat-shaped heat exchangers. The ratio of the maximum fluctuation of ensemble averaged working fluid 9 October 2016 temperatures, which is the ratio of the internal energy fluctuation to the heat capacity of the working Accepted 12 November 2016 fluid, to the temperature difference between the two heat exchangers in cases using flat-shaped heat Available online 12 November 2016 exchangers was 0.08e0.09, that in cases using channel-shaped heat exchangers was 0.10e0.17, and that in case using channel-shaped heat exchangers and regenerators was 0.21. The improvement in the ex- Keywords: Low temperature differential Stirling engine periments is lower than the estimation by the CFD. In terms of the polytropic index, low temperature Heat exchanger differential Stirling engines with channel-shaped heat exchangers and regenerators obtained a higher Regenerator value than low temperature differential Stirling engines with flat-shaped heat exchangers before the Indicated diagram displacer reached the dead center. Polytropic index © 2016 Elsevier Ltd. All rights reserved. 1.
    [Show full text]
  • Redalyc.Developing and Testing Low Cost LTD Stirling Engines
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Aragón-González, G.; Cano-Blanco, M.; Canales-Palma, A.; León-Galicia, A. Developing and testing low cost LTD Stirling engines Revista Mexicana de Física, vol. 59, núm. 1, febrero-, 2013, pp. 199-203 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57030970033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative THERMODYNAMICS Revista Mexicana de F´ısica S 59 (1) 199–203 FEBRUARY 2013 Developing and testing low cost LTD Stirling engines G. Aragon-Gonz´ alez´ ¤, M. Cano-Blanco, A. Canales-Palma, and A. Leon-Galicia´ PDPA, Universidad Autonoma´ Metropolitana-Azcapotzalco, Av. San Pablo # 180. Col. Reynosa. Azcapotzalco, 02200, D.F. Telefono´ y FAX: (55) 5318-9057. ¤e-mail: [email protected] Received 30 de junio de 2011; accepted 25 de agosto de 2011 The construction of miniature LTD Stirling engine prototypes, developed with low-cost materials and simple technologies is described. The protypes follow the Ringbom motor array, without mechanical linkages to actuate the displacer piston. Different designs, sizes, materials and mechanisms components have been tested. The power piston has been replaced with a flexible diaphragm and the mechanisms linkages were constructed with piano steel wire. Power output and efficiency experimental measurements are presented for two miniature LTD Stirling engines, the MM7 model from American Stirling Company and our simplest low cost model.
    [Show full text]