The Bering and Okhotsk Seas: Modern and Past Paleoceanographic Changes and Gateway Impact

Total Page:16

File Type:pdf, Size:1020Kb

The Bering and Okhotsk Seas: Modern and Past Paleoceanographic Changes and Gateway Impact Journal of Asian Earth Sciences, Vol. 16, No. 1, pp. 49±58, 1998 # 1998 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0743-9547(97)00048-2 1367-9120/98 $19.00 + 0.00 The Bering and Okhotsk Seas: modern and past paleoceanographic changes and gateway impact Kozo Takahashi Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku Fukuoka 812-81, Japan (Received 22 April 1996; Accepted 7 October 1997) AbstractÐThe high biological productivity and an ecient biological pumping in the subarctic Paci®c and adjacent seas make this region important to the modern carbon cycle and both mod- ern and the past climate of the Earth. Knowledge of the northern marginal seas of the Paci®c, however, is unsubstantial. The Bering Sea is located between the Paci®c Ocean and the Arctic Sea and plays an important role in ocean circulation, involving balances of heat, salt and various chemical properties. Thus, it is necessary to unravel the geologic history of the Bering Sea as a gateway to the Paci®c and the Arctic/Atlantic during the last 5 million years and beyond. The Okhotsk Sea is considered a locus of North Paci®c intermediate water formation today. The inter- mediate water formation is linked with seasonal sea-ice cover. Diatom records from the Okhotsk Sea demonstrate that sea-ice cover was distributed on the western side of the sea and the eastern part was open water during the last glacial maximum. This con®guration permitted a better venti- lation of the glacial Okhotsk Sea through increased quantity of intermediate water, presumably formed there at that time. # 1998 Published by Elsevier Science Ltd. All rights reserved Introduction ginal seas and the Paci®c Ocean and/or the Arctic Sea are important to understanding material and heat bal- Subpolar regions, including marginal seas, play signi®- ances and climate change. Studies of paleoceano- cant roles in the global carbon cycle and, hence, are graphic changes recorded in these seas provide important to global climate change. This is because pertinent information concerning the evolution of surface waters in these regions have the potential to northern hemisphere glaciation in association with the absorb atmospheric CO2. There are three principal Milankovitch orbital cycles, and other high-frequency belts of high biological productivity in the world cycles such as Dansgaard±Oeschger cycles. The past oceans, including, from north to south, the subarctic climatic±paleoceanographic changes and the need for belt (both Paci®c and Atlantic Oceans), the equatorial further studies in these regions will be also discussed in upwelling belt (Paci®c, Atlantic and Indian Oceans), this paper. and the circumpolar subantarctic belt (Berger et al. 1987). Moreover, the high biological productivity in the upper ocean involves either emission or absorption The Bering Sea of atmospheric CO2. It is generally concluded that the equatorial belt is the largest natural source of atmos- Geomorphology pheric CO2 (Tans et al. 1990; Murray 1995). The remaining two subpolar belts are generally regarded as The Bering Sea has a surface area of 2.29 Â 106 km2 behaving as CO2 sinks. Based on measured carbon and a volume of 3.75 Â 106 km3 and is the third largest and opal particle ¯uxes using sediment traps, Wong et marginal sea in the world, only surpassed by the al. (1995) showed that the central subarctic Paci®c is Mediterranean and the South China seas (Hood 1983). also a CO2 sink with a fairly eective opal pump. There are three major rivers which empty into the Analogous information from the northern marginal Bering Sea: the Kuskokwin and Yukon draining cen- seas of the Paci®c region, such as the Bering and tral Alaska and the Anadyr draining western Siberia Okhotsk Seas, is unsubstantial. However, available evi- (Fig. 1). The Yukon is the longest and supplies the lar- dence suggests that these two seas play a large role in gest discharge into the Bering Sea. Its discharge has a the global material balance and, in turn, climate peak in August of 4 Â 104 m3s-1 because of melt water, change. about equal to the Mississippi, and a mean ¯ow for This paper will review current knowledge and dis- the year of 5 Â 103 m3s-1, about two thirds the annual cuss the importance of the Bering and Okhotsk Seas, ¯ow of the Columbia River (Hood 1983). two northern marginal seas of the North Paci®c. The Approximately one half of the Bering Sea is a shal- present-day high productivity in the marginal seas, low (0±200 m) neritic area (Fig. 1). The major part of based on biogenic particle ¯uxes will be presented, and the continental shelf lies on the eastern side, o compared with that in the pelagic regions. The pro- Alaska, ranging from the Bristol Bay in the south to cesses of water mass exchange between these two mar- the Bering Strait in the north. The northern continen- 49 50 K. Takahashi Fig. 1. Major topographic features of the Bering Sea and Aleutian Islands. Contours of 100, 200, 1000 and 3500 m are shown. (Basic map from U.S. GLOBEC 1996). tal shelf is seasonally covered by sea ice, while little ice the Bering Sea, this is the major strait where it ¯ows occurs over the deep south-west areas. The continental out, followed by a secondary one at the Commander± slope occupies only 13% of the total Bering Sea area Near Strait at 2000 m present-day depth. and generally has a slope of 4±58. As the largest semi-enclosed marginal sea of the Other than the shelf regions, there are two signi®- Paci®c rim, the Bering Sea's indisputable in¯uence has cant topographic highs which provide better calcium been recognized in various oceanographic processes. carbonate preservation than the basins (Creager et al. Although the amount is less than the water exchange 1973). The Shirshov Ridge extends south from the through the Aleutian channels, the out¯ux of the Kamchatka Peninsula along 1708E separating the Bering Sea surface water is important, since it ¯ows Aleutian Basin into eastern and the western parts. The one way into the Chukchi Sea in the Arctic. This Bowers Ridge (sometimes referred to as the North Rat amount is estimated to be 0.8 Sv, according to Island Ridge/Bank) extends 300 km north from the Coachman and Agaard (1981). This is the only Aleutian Island Arc (Fig. 1). The Aleutian Basin is a ``Paci®c'' origin water that eventually ¯ows into the vast plain lying at a depth of 3800±3900 m with oc- Atlantic through the Arctic Sea. The Bering Strait pro- casional gradual sloping hollows to depths of as much vides one of the highest biological productivities in the as 4151 m (Hood 1983). world, 324 g C m-2y-1 over a wide area (2.12 Â 104 km2: Sambrotto et al. 1984). Much of the biological pro- Physical oceanography and the signi®cance of the gate- duction of organic matter and associated nutrients way to the Arctic Sea ¯owing into the Arctic Ocean today is due to this northerly current direction. The Alaskan Stream, which is an extension of the This may have a profound eect on the nature of Alaskan Current ¯owing westward along the Aleutian carbonate production in the Atlantic and opal pro- Islands, mainly enters through the Amchitka Pass with duction in the Paci®c (the carbonate ocean vs silica the remainder entering through the pass west of Attu ocean hypothesisÐHonjo 1990). Such one way ¯ow Island in the eastern Aleutian Islands (Fig. 2). A part into the Arctic Ocean, however, did not necessarily of the Subarctic Current also joins the northward ¯ow always operate in the past. Glaciation and perennial coming from the Alaskan Stream, resulting in a com- sea-ice cover can certainly block such a ¯ow. During bined volume transport of 11 Sv (Ohtani 1965). Much the glacial periods the Bering Strait, which is about of the Paci®c water masses entering the Bering Sea 50 m deep today, was aerially exposed, due to sea-level goes out through passes in the Aleutian Islands. The drop and, thus, the Bering±Arctic gateway was com- most signi®cant one is through the Kamchatka Strait, pletely shut. What was the impact on water circulation present maximum depth of which is 4420 m. If the gla- then? It is not hard to imagine that such a closure cial North Paci®c intermediate water mass is formed in caused a major change in global water mass circulation The Bering and Okhotsk Seas 51 Fig. 2. A map showing surface currents in the Bering Sea (from Arsen'ev 1967). during the glacial periods. The glacial Yukon River North Paci®c intermediate water (NPIW) (e.g. Talley discharge, for example, had to eventually come out of 1991). Talley (1991) demonstrates that oxygen-rich the Bering Sea into the North Paci®c, without any Okhotsk deep water (to avoid a possible confusion alternative outlet. hereafter we de®ne this water as ``intermediate water'') Such a unidirectional ¯ow of the Bering Sea water, ¯ows into the Paci®c Ocean and ventilates the Paci®c eventually ¯owing into the Atlantic, should aect not subpolar gyre. The intermediate water formation only the heat balance, but also the salt balance and, during the summer months might be associated with hence, the formation of deep-water masses. It is the in¯ow of saline waters from the Japan Sea through known that during glacial intervals, the Atlantic Ocean the Soya Strait.
Recommended publications
  • PICES Sci. Rep. No. 2, 1995
    TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • Sea of Japan a Maritime Perspective on Indo-Pacific Security
    The Long Littoral Project: Sea of Japan A Maritime Perspective on Indo-Pacific Security Michael A. McDevitt • Dmitry Gorenburg Cleared for Public Release IRP-2013-U-002322-Final February 2013 Strategic Studies is a division of CNA. This directorate conducts analyses of security policy, regional analyses, studies of political-military issues, and strategy and force assessments. CNA Strategic Studies is part of the global community of strategic studies institutes and in fact collaborates with many of them. On the ground experience is a hallmark of our regional work. Our specialists combine in-country experience, language skills, and the use of local primary-source data to produce empirically based work. All of our analysts have advanced degrees, and virtually all have lived and worked abroad. Similarly, our strategists and military/naval operations experts have either active duty experience or have served as field analysts with operating Navy and Marine Corps commands. They are skilled at anticipating the “problem after next” as well as determining measures of effectiveness to assess ongoing initiatives. A particular strength is bringing empirical methods to the evaluation of peace-time engagement and shaping activities. The Strategic Studies Division’s charter is global. In particular, our analysts have proven expertise in the following areas: The full range of Asian security issues The full range of Middle East related security issues, especially Iran and the Arabian Gulf Maritime strategy Insurgency and stabilization Future national security environment and forces European security issues, especially the Mediterranean littoral West Africa, especially the Gulf of Guinea Latin America The world’s most important navies Deterrence, arms control, missile defense and WMD proliferation The Strategic Studies Division is led by Dr.
    [Show full text]
  • Flow of Pacific Water in the Western Chukchi
    Deep-Sea Research I 105 (2015) 53–73 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Flow of pacific water in the western Chukchi Sea: Results from the 2009 RUSALCA expedition Maria N. Pisareva a,n, Robert S. Pickart b, M.A. Spall b, C. Nobre b, D.J. Torres b, G.W.K. Moore c, Terry E. Whitledge d a P.P. Shirshov Institute of Oceanology, 36, Nakhimovski Prospect, Moscow 117997, Russia b Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA c Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada d University of Alaska Fairbanks, 505 South Chandalar Drive, Fairbanks, AK 99775, USA article info abstract Article history: The distribution of water masses and their circulation on the western Chukchi Sea shelf are investigated Received 10 March 2015 using shipboard data from the 2009 Russian-American Long Term Census of the Arctic (RUSALCA) pro- Received in revised form gram. Eleven hydrographic/velocity transects were occupied during September of that year, including a 25 August 2015 number of sections in the vicinity of Wrangel Island and Herald canyon, an area with historically few Accepted 25 August 2015 measurements. We focus on four water masses: Alaskan coastal water (ACW), summer Bering Sea water Available online 31 August 2015 (BSW), Siberian coastal water (SCW), and remnant Pacific winter water (RWW). In some respects the Keywords: spatial distributions of these water masses were similar to the patterns found in the historical World Arctic Ocean Ocean Database, but there were significant differences.
    [Show full text]
  • 12 Northern Bering-Chukchi Sea
    12/18:&LME&FACTSHEET&SERIES& NORTHERN BERING- CHUKCHI SEA LME tic LMEs Arc NORTHERN'BERING+CHUKCHI'SEA'LME'MAP 18 of Map Russia Bering Strait Alaska Russia LME Canada Iceland Central Arctic Ocean 12 "1 ARCTIC LMEs Large&! Marine& Ecosystems& (LMEs)& are& defined& as& regions& of& work&of&the&ArcMc&Council&in&developing&and&promoMng&the& ocean& space& of& 200,000& km²& or& greater,& that& encompass& Ecosystem& ApproacH& to& management& of& the& ArcMc& marine& coastal& areas& from& river& basins& and& estuaries& to& the& outer& environment.& margins& of& a& conMnental& sHelf& or& the& seaward& extent& of& a& predominant&coastal&current.&LMEs&are&defined&by&ecological& Joint'EA'Expert'group' criteria,&including&bathymetry,&HydrograpHy,&producMvity,&and& PAME& establisHed& an& Ecosystem& ApproacH& to& Management& tropically& linked& populaMons.& PAME& developed& a& map& expert& group& in& 2011& with& the& parMcipaMon& of& other& ArcMc& delineaMng&17&ArcMc&Large&Marine&Ecosystems&(ArcMc&LME's)& Council&working&groups&(AMAP,&CAFF&and&SDWG).&THis&joint& in&the&marine&waters&of&the&ArcMc&and&adjacent&seas&in&2006.& Ecosystem&ApproacH&Expert&Group&(EAYEG)&Has&developed&a& In&a&consultaMve&process&including&agencies&of&ArcMc&Council& framework& for& EA& implementaMon& wHere& the& first& step& is& member&states&and&other&ArcMc&Council&working&groups,&the& idenMficaMon& of& the& ecosystem& to& be& managed.& IdenMfying& ArcMc& LME& map& was& revised& in& 2012&to&include&18&ArcMc& the&ArcMc&LMEs&represents&this&first&step. LMEs.& THis& is& the& current&
    [Show full text]
  • Origin of Marginal Basins of the NW Pacific and Their Plate Tectonic
    Earth-Science Reviews 130 (2014) 154–196 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Origin of marginal basins of the NW Pacificandtheirplate tectonic reconstructions Junyuan Xu a,⁎, Zvi Ben-Avraham b,TomKeltyc, Ho-Shing Yu d a Department of Petroleum Geology, China University of Geosciences, Wuhan, 430074, China. b Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv 69978, Israel c Department of Geological Sciences, California State University, Long Beach, CA 90840, USA d Institute of Oceanography, National Taiwan University, Taipei, Taiwan article info abstract Article history: Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, Received 4 March 2013 South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry Accepted 3 October 2013 of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also com- Available online 16 October 2013 prise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional Keywords: “pop-up” structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) Marginal basins of the NW Pacific Dextral pull-apart rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their Sinistral transpressional pop-up sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be Uplift of Tibetan Plateau explained by dextral pull-apart or transtension.
    [Show full text]
  • Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
    Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.
    [Show full text]
  • DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
    60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations.
    [Show full text]
  • Kamchatka Peninsula and Salmon Research with Pro Plus
    YSI Environmental Application Note Kamchatka Peninsula: Where the Waters Run Free and Salmon Thrive In Russia’s Far East lies the 1,250 km (780 mile) Kamchatka The habitat on the Kol is nearly ideal for salmon. The salmon run Peninsula. Situated between the Pacific Ocean and the Sea of includes over seven million fish returning to spawn. The fish fill Okhotsk, Kamchatka is home to Steller’s sea-eagles, brown bears, the river channel so fully that some sections block the view to the World Heritage List volcanoes, and a remarkable amount of Pacific river bottom. The Kol also has the world’s first whole-basin refuge salmon (genus Oncorhynchus) that are being studied, protected, and for the conservation of Pacific salmon - the Kol-Kekhta Regional even filmed for television. Experimental Salmon Reserve. Kamchatka may contain the world’s Research greatest diversity of salmonids including Along the Kol’s north bank is the Kol River chinook, chum, coho, seema, pink and Biostation established for the sole purpose sockeye salmon. Rainbow trout and dolly of serving as a binational research station varden char are also highly abundant. between Russia and the U.S. Researchers Biologists estimate at least 20% of all wild are studying the dynamics of the Kol Pacific salmon originates in Kamchatka. ecosystem and addressing the question of the importance of the salmon to the health The life of a salmon is far from easy as a of the entire river’s ecosystem. fish life goes. Millions of fry, roughly five inches long after a few months of growth, While there is no question to the have to navigate close to a hundred miles All six species of Pacific salmon spawn in the importance of the healthy ecosystem on to the sea.
    [Show full text]
  • ATOC 5051: Introduction to Physical Oceanography HW #1: Given Sep 2; Due Sep 16, 2014 Answerkey
    ATOC 5051: Introduction to Physical Oceanography HW #1: Given Sep 2; Due Sep 16, 2014 Answerkey Note: you may use any “reliable” resources (peer-reviewed journal articles, books, official websites such as NOAA website, etc.) – in addition to the class materials - to complete this homework. Please list the extra-references (if you have used any) at the end of your homework. 1. Ocean basin and climate (30pts) 1a) Draw a schematic diagram showing the common features of ocean basins; specify the percentage (in volume) that each part roughly occupies. (5pts) Although each ocean basin varies in its location and size, all oceans have common features. They have continental shelf (7.4% of the ocean volume), continental slope, continental rise (slope+rise 15.9%), and abyssal plain (76.7%) with ridges and trenches. See schematic diagram below. Schematic diagram showing the common features of ocean basins. 1b) In which ocean is the thermohaline circulation strong? (2pts) Discuss its basin geometry (including the area, zonal and meridional extent, mean depth) (3pts); Provide a reason for why you think this ocean favors the thermohaline circulation. (2pts) The Atlantic. The Atlantic Ocean has a total meridional extent: It extends from the Arctic to Antarctic. Its zonal largest extent, however, spans little more than 8300km from the Gulf of Mexico to the coast of northwest Africa. It has the largest number of adjacent seas. With all its adjacent seas, Atlantic Ocean covers 106 ×106 km2. Its mean depth is 3300m. 1 The full North-South extent of the Atlantic allows the ocean to extend farther north, where it is cold enough to produce heavier surface water than the subsurface water and thus cause convection and deep- water formation.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]