Reconstructing the Vascular Regenerative Niche with Oxygen-Controllable Hydrogels

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructing the Vascular Regenerative Niche with Oxygen-Controllable Hydrogels RECONSTRUCTING THE VASCULAR REGENERATIVE NICHE WITH OXYGEN-CONTROLLABLE HYDROGELS By Michael R. Blatchley A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July 2019 © 2019 Michael R. Blatchley All Rights Reserved 1 Abstract A thorough understanding of the molecular and microenvironmental regulators of blood vessel formation is key to designing new therapeutic strategies to treat two of the leading causes of death worldwide, cardiovascular disease and cancer. Two key parameters of the vascular regenerative niche that play broad and potent roles in endothelial cell (EC) morphogenesis are matrix stiffness and hypoxia (defined as <5% O2). To recapitulate these cues, we designed hydrogels comprised of gelatin and dextran backbones to study the effects of O2 and matrix stiffness on ECs. For both of these hydrogel backbones, we conjugated phenolic moieties, which can be enzymatically crosslinked in an O2-consuming reaction to form a hypoxic hydrogel. By altering the concentration of each polymer component and adding or omitting a secondary crosslinker, we generated a set of hydrogels that spanned both a range of physiological stiffnesses and hypoxic conditions. We studied the mechanism of cluster-based vasculogenesis that had previously been reported in vivo, but never studied in vitro because of the limitations with existing cell culture platforms. Using our O2-controllable hydrogels, we observed and quantified the kinetics of cluster formation, and determined key regulators of the process. EC exposure to hypoxia led to upregulation of reactive oxygen species and proteases that facilitated rapid matrix degradation and cluster formation. ECs sprouted from clusters via cell-matrix interactions to form expansive vascular networks, which could be further enhanced through secondary crosslinking to increase cell-matrix interactions. In vivo studies in a mouse model confirmed the proposed mechanism. Finally, in depth analysis of specific signaling involved in cluster formation included genes associated with cell cycle, cell survival, and metabolism. This work has illuminated key regulators of a complex mechanism for vasculogenesis, and represents a powerful in vitro tool to study cells in an environment that closely matches the niche in which they reside in vivo. Thesis advisor: Dr. Sharon Gerecht Thesis committee members: Dr. Warren Grayson and Dr. Akrit Sodhi ii Acknowledgements I would first like to thank my thesis advisor, Dr. Sharon Gerecht, for providing me with exemplary mentorship. From the first meeting I had with her to discuss a rotation in the lab, she listened to my interests and helped guide me to learn the skills necessary to become a successful PhD student, as well as set myself up well for the next stages of my career. She believed in me as a scientist and writer from the early stages of my time in the lab, and has been invaluable in helping me refine and expand my skillset both in the lab and in disseminating my work. There were high points and low points during my time as a PhD student, and it was great to know I would always have Dr. Gerecht’s support to work through the difficult times and celebrate the successes. I would also like to thank my thesis committee members, Dr. Warren Grayson and Dr. Akrit Sodhi, for helping guide and refine my lines of inquiry. They have challenged me to think critically about my work, have asked thoughtful questions, and have suggested a number of important experiments. Our discussions have also helped me refine the best ways to present my work, and have helped me improve how I design an experimental plan. Letters of recommendation are a crucial component in attaining fellowships, awards, and future jobs. I have applied for many fellowships and awards over the last six years and am incredibly thankful for all those professors that have written letters for me since applying for graduate school: Dr. Kinam Park, Dr. Clint Chapple, Dr. Irina Petrache, Dr. Jennifer Elisseeff, Dr. Sharon Gerecht, Dr. Hai-Quan Mao, Dr. Honggang Cui, Dr. Jason Burdick, and Dr. Michael Miller. I also want to thank the past and current members of the Gerecht lab. We are a wonderfully diverse and ceaselessly entertaining and wonderful collection of young scientists. Our conversations in the office range from incredibly productive discussions of science and experimental design, to venting about reviewers, to talking about new restaurants and movies. It is great to have a group of people so willing talk science as well as life outside of science. iii When I first joined the lab, I learned from many lab members, but Dr. Kyung Min Park served as my primary mentor. Kyung was a great mentor to me and served as a role model through his work ethic and his commitment to always better himself as a scientist, communicator, and husband and father. I have had many productive scientific discussions with members of the lab and am specifically thankful for fruitful discussions with Dr. Xin Yi Chan, Dr. Tom Shen, Dr. Quinton Smith, Dr. Hawley Pruitt, Dr. Zhao Wei, Dr. Dan Lewis, Matt Davenport, Bria Macklin, Justin Lowenthal, Morgan Elliott, John Jamieson, Eugenia Volkova, and Franklyn Hall. The members of the lab have become good friends of mine and I have really enjoyed getting to know everyone better through game nights and happy hours. It has also been wonderful to have a competitive outlet throughout my time in graduate school, so I am thankful for the many opportunities to play soccer, basketball, football, and softball with friends from the lab, the BME and ChemBE programs, and outside of Hopkins in various city leagues. I have had the opportunity to mentor a number of students: Brooke Smith, Songnan Wang, Franklyn Hall, Arianne Papa, and Vidur Kailash, over the last six years and am thankful for the opportunity to improve myself as a mentor and very thankful for their patience as I improved my mentorship skills. The INBT and BME administration have been instrumental to my success in graduate school. Hong Lan has been a wonderful resource in the BME department, and I am grateful to have had the opportunity to work closely with her as president of the PhD council. Conversations with Hong never fail to be entertaining and she is an incredibly positive presence in the department and Hopkins community. I am also thankful to the INBT staff, including Kierra Suggs, Ellie Boettinger-Heasley, Gregg Nass, Carla Dodd, Christine Duke, Jon French, Camille Mathis, Lateai Jones, Ada Simari, Sky Tharp, Luke Thorstenson, and Gina Wadas. I will always be grateful to have received such wonderful mentorship from my time as an undergraduate until now. Dr. Kinam Park, John Garner, Dr. Clint Chapple, Dr. Kelly Schweitzer, Dr. Irina Petrache, and Dr. Jennifer Elisseeff all provided amazing research opportunities and helped me develop new research skills each step of the way. iv I would be nowhere without the continued support of my family. I am extremely fortunate to have a family who has an empathetic view towards the rigors of a PhD program. My dad was my first research mentor, and I really want to thank him for giving me the opportunity to work in his lab in high school, and will be forever thankful for our discussions of science and how to best set myself up for career success on our long bike rides. I have learned the importance of a long bike ride, run, hike, or walk from my dad, and these times have been valuable in organizing my thoughts, planning a paper or figures, or simply clearing my head after a long and frustrating day. Finally, I want to give thanks to my wonderful wife, Kaylee. She has supported me through my time in graduate school and has encouraged me to take a break or two from working and email for a number of long weekend trips from Shenandoah to the Adirondacks. I am grateful for her patience and understanding through the busy grant and paper writing times, and for listening to my complaints. There have been times that I have been overwhelmed with work, and she is always there to support me and encourage me. She always challenges me to become a better person, and I couldn’t ask for a better partner in life. Thank you! v Table of Contents ABSTRACT .................................................................................................................................................. ii ACKNOWLEDGEMENTS ......................................................................................................................iii-v LIST OF TABLES ...................................................................................................................................... xii LIST OF FIGURES ............................................................................................................................ xiii-xiv 1 Reconstructing the Vascular Developmental Milieu In Vitro .............................................................. 1 1.1 Teaser ...................................................................................................................................................... 1 1.2 Introduction ............................................................................................................................................. 1 1.3 Evolution of the vascular system ............................................................................................................ 2 1.4 Early vascular development – vasculogenesis .......................................................................................
Recommended publications
  • Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
    Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins
    [Show full text]
  • The Circulatory System
    TheThe CirculatoryCirculatory SystemSystem Xue Hui DepartmentDepartment ofof HistologyHistology && EmbryologyEmbryology TheThe CirculatoryCirculatory SystemSystem Cardiovascular system (blood vascular system) Heart Artery Capillary Vein Lymphatic vascular system Lymphatic capillary Lymphatic vessel Lymphatic duct II GeneralGeneral structurestructure ofof thethe bloodblood vesselsvessels Tunica intima Tunica media Tunica adventitia Drawing of a medium-sized muscular artery, showing its layers. II GeneralGeneral structurestructure ofof thethe bloodblood vesselsvessels IIII ArteryArtery Large artery Medium-sized artery Small artery Arteriole II Artery LargeLarge arteryartery Structure Tunica intima Tunica media 40-70 layers of elastic lamina Smooth muscle cells, collagenous fibers Tunica adventitia Function Carry the blood from the heart to the middle arteries Tunica Tunica intima intima Tunica Tunica media media Tunica Tunica adventitia adventitia Transverse sections showing part of a large elastic artery showing a well developed tunica media containing several elastic laminas. II Artery MediumMedium--sizedsized arteryartery Structure Tunica intima: clear internal elastic membrane Tunica media: 10-40 layers of smooth muscle cells Tunica adventitia: external elastic membrane Function Regulate the distribution of the blood to various parts of the body Tunica Internal intima elastic membrane Tunica media External elastic membrane Tunica adventitia II Artery SmallSmall arteryartery Structure characteristic Diameter:0.3-1mm Tunica intima: clear
    [Show full text]
  • Infliximab, a TNF-Α Inhibitor, Reduces 24-H Ambulatory
    Journal of Human Hypertension (2014) 28, 165–169 & 2014 Macmillan Publishers Limited All rights reserved 0950-9240/14 www.nature.com/jhh ORIGINAL ARTICLE Infliximab, a TNF-a inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients S Yoshida1, T Takeuchi1, T Kotani1, N Yamamoto1, K Hata1, K Nagai1, T Shoda1,STakai2, S Makino1 and T Hanafusa1 Tumour necrosis factor-alpha (TNF-a) is an important mediator in the pathogenesis of rheumatoid arthritis (RA) and hypertension. TNF-a inhibitors improve clinical symptoms and inhibit joint destruction in RA, but their effect on blood pressure (BP) has not been fully investigated. We measured 24-h BP using an ambulatory BP monitor in 16 RA patients treated with a TNF-a inhibitor, infliximab, to investigate its influence on BP and its association with the regulatory factors of BP and renin-angiotensin-aldosterone and sympathetic nervous systems. Infliximab significantly reduced the 24-h systolic BP (SBP) from 127.4±21.8 to 120.1±23.4 mm Hg (Po0.0001). Particularly, morning BP (0600–0800 h) decreased from 129.7±19.7 to 116.9±13.4 mm Hg (Po0.0001), and daytime BP decreased from 131.8±15.1 to 122.5±13.7 mm Hg (Po0.0001). Infliximab significantly reduced the plasma level of norepinephrine and plasma renin activity (PRA) (from 347.5±180.7 to 283.0±181.8 pg ml À 1 and 2.6±2.7 to 2.1±2.9 ng ml À 1 h À 1, respectively) but did not significantly reduce the plasma levels of dopamine and epinephrine.
    [Show full text]
  • Anatomy Review: Blood Vessel Structure & Function
    Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction • The blood vessels of the body form a closed delivery system that begins and ends at the heart. Page 2. Goals • To describe the general structure of blood vessel walls. • To compare and contrast the types of blood vessels. • To relate the blood pressure in the various parts of the vascular system to differences in blood vessel structure. Page 3. General Structure of Blood Vessel Walls • All blood vessels, except the very smallest, have three distinct layers or tunics. The tunics surround the central blood-containing space - the lumen. 1. Tunica Intima (Tunica Interna) - The innermost tunic. It is in intimate contact with the blood in the lumen. It includes the endothelium that lines the lumen of all vessels, forming a smooth, friction reducing lining. 2. Tunica Media - The middle layer. Consists mostly of circularly-arranged smooth muscle cells and sheets of elastin. The muscle cells contract and relax, whereas the elastin allows vessels to stretch and recoil. 3. Tunica Adventitia (Tunica Externa) - The outermost layer. Composed of loosely woven collagen fibers that protect the blood vessel and anchor it to surrounding structures. Page 4. Comparison of Arteries, Capillaries, and Veins • Let's compare and contrast the three types of blood vessels: arteries, capillaries, and veins. • Label the artery, capillary and vein. Also label the layers of each. • Arteries are vessels that transport blood away from the heart. Because they are exposed to the highest pressures of any vessels, they have the thickest tunica media.
    [Show full text]
  • Blood Vessels: Part A
    Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand
    [Show full text]
  • BIO 2402 Resource 8
    BIO 2402 — Human Anatomy & Physiology Week 8: March 7-13 This week we will be covering the last chapter of the cardiovascular system about blood vessels. You should be able to know the different types of blood vessels, the factors that influence blood pressure, and the difference between baroreceptors and chemoreceptors. Remember that the Tutoring Center offers free individual and group tutoring for this class. Our Group Tutoring sessions will be every Wednesday from 6:00-7:00 PM CST. You can reserve a spot at https://baylor.edu/tutoring. KEY TERM: Vasoconstrictor, Vasodilator, Elastic Artery, Fenestrated Capillary, Vasomotor Center Blood vessel tunics & tissues Arteries Elastic/conducting: large diameter, thick walls, elastic tissue Aorta, brachiocephalic, common carotids, subclavian, common iliac Muscular/distributing: trans. blood to arterioles, thickest tunica media, less elastic tissue Brachials, mesenterics, femorals, tibials Arterioles: only smooth muscle & endothelium Metarterioles: smaller arterioles, precapillary sphincters regulate blood flow into the capillaries. Capillaries Fenestrated: small pores that material can pass through Sinusoids: type of fenestrated capillary in the liver, spleen, pancreas, and bone marrow Continuous: more common, lacks fenestrations All of these arteries and veins can be visualized using the diagram above. Blood pressures For blood pressure we will focus on capillary dynamics and factors affecting vessel diameter. All images are taken from Dr. Taylor’s textbook Vasoconstrictors & vasodilators are factors
    [Show full text]
  • Blood and Lymph Vascular Systems
    BLOOD AND LYMPH VASCULAR SYSTEMS BLOOD TRANSFUSIONS Objectives Functions of vessels Layers in vascular walls Classification of vessels Components of vascular walls Control of blood flow in microvasculature Variation in microvasculature Blood barriers Lymphatic system Introduction Multicellular Organisms Need 3 Mechanisms --------------------------------------------------------------- 1. Distribute oxygen, nutrients, and hormones CARDIOVASCULAR SYSTEM 2. Collect waste 3. Transport waste to excretory organs CARDIOVASCULAR SYSTEM Cardiovascular System Component function Heart - Produce blood pressure (systole) Elastic arteries - Conduct blood and maintain pressure during diastole Muscular arteries - Distribute blood, maintain pressure Arterioles - Peripheral resistance and distribute blood Capillaries - Exchange nutrients and waste Venules - Collect blood from capillaries (Edema) Veins - Transmit blood to large veins Reservoir Larger veins - receive lymph and return blood to Heart, blood reservoir Cardiovascular System Heart produces blood pressure (systole) ARTERIOLES – PERIPHERAL RESISTANCE Vessels are structurally adapted to physical and metabolic requirements. Vessels are structurally adapted to physical and metabolic requirements. Cardiovascular System Elastic arteries- conduct blood and maintain pressure during diastole Cardiovascular System Muscular Arteries - distribute blood, maintain pressure Arterioles - peripheral resistance and distribute blood Capillaries - exchange nutrients and waste Venules - collect blood from capillaries
    [Show full text]
  • Arteries.Pdf
    Arteries Although blood vessels differ in size, distribution, and function, structurally they share many common features. As in the heart, the walls of blood vessels consist of three major coats or tunics. Differences in the appearance and functions of the various parts of the circulatory system are reflected by structural changes in these tunics or by reduction and even omission of some of the layers. From the lumen outward, the wall of a blood vessel consists of a tunica intima, tunica media, and tunica adventitia. The tunica intima corresponds to and is continuous with the endocardium of the heart. It consists of an endothelium of flattened squamous cells resting on a basal lamina and is supported by a subendothelial connective tissue. The tunica media is the equivalent of the myocardium of the heart and is the layer most variable both in size and structure. Depending on the function of the vessel, this layer contains variable amounts of smooth muscle and elastic tissue. The tunica adventitia also varies in thickness in different parts of the vascular circuit. It consists mainly of collagenous connective tissue and corresponds to the epicardium of the heart, but it lacks mesothelial cells. As arteries course away from the heart they undergo successive divisions to provide numerous branches whose calibers progressively decrease. The changes in size and the corresponding changes in structure of the vessel wall are continuous, but three classes of arteries can be distinguished: large elastic or conducting arteries, medium-sized muscular or distributing arteries, and small arteries and arterioles. A characteristic feature of the entire arterial side of the blood vasculature system is the prominence of smooth muscle in the tunica media.
    [Show full text]
  • Microscopic Anatomy of the Human Vertebro-Basilar System
    MICROSCOPIC ANATOMY OF THE HUMAN VERTEBRO-BASILAR SYSTEM RENATO P. CHOPARD * — GUILHERME DE ARAÚJO LUCAS * ADRIANA LAUDANA* SUMMARY — Concerning the structure of connective-muscular components the authors stu­ died the walls of the terminal segments of the vertebral arteries as well as the basilar artery, utilizing the following staining methods: Azan modified by Heideinheim, Weigert's resor-¬ cin-fuchsin, and Weigert modified by van Gieson. It was established that wall of the verte-¬ bro-basilar system exhibits a mixed structure, muscular and elastic, by means of which the vessels are adjusted to the specific blood circulation conditions. Thus, vertebral arteries show in the most external layer of tunica media an evident external elastic lamina. In contrast, in the basilar artery the elastic tissue is localized mainly in the tunica media, and is distributed heterogeneously. In its caudal segment the elastic fibers are situated in the most internal layer of tunica media, and in the cranial segment the elastic component is homogenously distributed in the whole of tunica media. Anatomia microscópica do sistema, vértebro basilar no homem. RESUMO — Os autores estudam a disposição dos componentes fibromusculare» da parede das artérias vertebrais em seus segmentos terminais e a artéria basilar, usando os seguintes métodos de coloração: Azan modificado por Heidenheim, resorcina-fucsina de Weigert e Weigert modificado por van Gieson. O sistema vértebro-basilar apresentou em sua parede estrutura mista, muscular e elástica, pela qual os vasos se adaptam às condições circulató­ rias especificas daquela região. Besta forma, ias artérias vertebrais apresentam na camada mais externa da túnica média uma lâmina elástica limitante externa evidente, ao contrário do encontrado na artéria basilar.
    [Show full text]
  • Aortic Intramural Hematoma Associated with Primary Aldosteronism
    대한내분비학회지: 제 24권 제 3 호 2009 □ 증 례 □ 10.3803/jkes.2009.24.3.217 1) Aortic Intramural Hematoma Associated with Primary Aldosteronism 전남대학교 의과대학 내과학교실 정진욱․조동혁․정동진․정민영 Aortic Intramural Hematoma Associated with Primary Aldosteronism Jin Ook Chung, Dong Hyeok Cho, Dong Jin Chung, Min Young Chung Department of Internal Medicine, Chonnam National University Medical School ABSTRACT Intramural hematoma of the aorta is a variant of aortic dissection characterized by the absence of direct communication between the false lumen and the true lumen of the aorta. Primary aldosteronism, which is an uncommon cause of hypertension, may direct alter arterial structure through the pleiotropic effects of aldosterone as well as pressure-mediated indirect alterations. There have been several reported cases of aortic dissection in patients with primary aldosteronism, which suggests a causal relationship between the two diagnostic entities. However, intramural hematoma has not been described in a patient with primary aldosteronism. We describe a case of aortic intramural hematoma in a patient with primary aldosteronism and speculate about the causal relationship between these two entities. (J Korean Endocr Soc 24:217~220, 2009) ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ Key Words: aorta, hematoma, hyperaldosteronism Introduction is suppressed[2]. Primary aldosteronism may cause direct alterations in arterial structure through the pleiotropic Intramural hematoma of the aorta is a variant of aortic effects of aldosterone, as well as indirect alterations through dissection characterized by the absence of direct communi- pressure effects[3]. There have been several reported cases cation between the false lumen and the true lumen of the of aortic dissection in patients with primary aldosteronism, aorta[1].
    [Show full text]
  • Regulatory Roles of Endothelial Cells in Cancer
    REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER MASSACHUSETTS INSTIilr By OF TECHNOLOGY Joseph W. Franses JUN 0 8 2011 B.S. Chemical Engineering, B.S. Chemistry Purdue University, 2005 LIBRARIES SUBMITTED TO THE HARVARD-M.I.T. DIVISION OF HEALTH SCIENCES AND TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL ENGINEERING ARCHW AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 2011 @ Massachusetts Institute of Technology All riahts reserved Signature of Author Hara-Mi i ULivision oT Health Sciences and Technology May 16, 2011 Certified by: Elazer R. Edelman, M.D.-Ph.D. Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, M.I.T. Thesis Supervisor Accepted by: Ram Sasisekharan, Ph.D. Edward Hood Taplin Professor of Health Sciences and Technology and Biological Engineering, M.I.T. Director, Harvard-M.I.T. Division of Health Sciences and Technology REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER By Joseph W. Franses Submitted to the Harvard-M.I.T. Division of Health Sciences and Technology on May 16, 2011 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biomedical Engineering Advisor: Elazer R. Edelman, Thomas and Virginia Cabot Professor of Health Sciences and Technology, M.I.T. Thesis committee chair: David A. Housman, Ludwig Professor of Biology, M.I.T. Thesis committee: 1. Sangeeta N. Bhatia, Professor of Health Sciences and Technology and Professor of Electrical Engineering and Computer Science, M.I.T. 2. David T. Scadden, Gerald and Darlene Jordan Professor of Medicine, Harvard University Abstract This thesis describes the biochemical regulatory impact of endothelial cells, the cells that line all blood vessels, in cancer.
    [Show full text]
  • Morphometric Analysis of Thoracic Aorta in Slc39a13/Zip13-KO Mice
    Cell and Tissue Research (2019) 376:137–141 https://doi.org/10.1007/s00441-018-2977-9 SHORT COMMUNICATION Morphometric analysis of thoracic aorta in Slc39a13/Zip13-KO mice Takuya Hirose1 & Takamasa Shimazaki1 & Naoki Takahashi1 & Toshiyuki Fukada2 & Takafumi Watanabe1,3 & Prasarn Tangkawattana 1,4 & Kazushige Takehana1 Received: 18 July 2018 /Accepted: 13 October 2018 /Published online: 4 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Ehlers–Danlos syndrome (EDS) is a collection of inheritable diseases involving the musculoskeletal, integumentary and visual systems. Spondylodysplastic EDS-ZIP13 (spEDS-ZIP13: OMIM 612350) was recently defined as a new form of EDS. Although vasculitis has been found in many spEDS-ZIP13 patients, vascular pathology has not been included as a pathognomonic lesion of this type of EDS. We investigate the morphometry of the thoracic aorta in wild-type and Zip13-knockout (Zip13-KO) mice. Our assessment found abnormalities in the number and morphology of elastic and cellular components in the aortic wall, especially the tunica media, of Zip13-KO mice, indicating aortic fragility. Accordingly, our major findings (vascular smooth muscle cells with small nuclei, small percentage of elastic membrane area per tunica media, many large elastic flaps) should be considered vulnerable characteristics indicating fragility of the aorta in patients with spEDS-ZIP13. Keywords Aorta . Elasticity . Elastic membrane . Morphometry . Slc39a13/Zip13-KO mouse Introduction (Fukada et al. 2008). ZIP13, a member of the SLC39/ZIP family, is an intercellular zinc transporter located in the Ehlers–Danlos syndrome (EDS) is a collection of hereditary Golgi complex of osteoblasts, chondrocytes, pulpal cells diseases that manifest as skin hyperextension, joint hypermo- and fibroblasts (Fukada et al.
    [Show full text]