Pine Spittlebug
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Adaptation of Immature Stages of Hemipteran Insects
© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Morphology and Adaptation of Immature Stages of Hemipteran Insects Devina Seram and Yendrembam K Devi Assistant Professor, School of Agriculture, Lovely Professional University, Phagwara, Punjab Introduction Insect Adaptations An adaptation is an environmental change so an insect can better fit in and have a better chance of living. Insects are modified in many ways according to their environment. Insects can have adapted legs, mouthparts, body shapes, etc. which makes them easier to survive in the environment that they live in and these adaptations also help them get away from predators and other natural enemies. Here are some adaptations in the immature stages of important families of Hemiptera. Hemiptera are hemimetabolous exopterygotes with only egg and nymphal immature stages and are divided into two sub-orders, homoptera and heteroptera. The immature stages of homopteran families include Delphacidae, Fulgoridae, Cercopidae, Cicadidae, Membracidae, Cicadellidae, Psyllidae, Aleyrodidae, Aphididae, Phylloxeridae, Coccidae, Pseudococcidae, Diaspididae and heteropteran families Notonectidae, Corixidae, Belastomatidae, Nepidae, Hydrometridae, Gerridae, Veliidae, Cimicidae, Reduviidae, Pentatomidae, Lygaeidae, Coreidae, Tingitidae, Miridae will be discussed. Homopteran families 1. Delphacidae – Eg. plant hoppers They comprise the largest family of plant hoppers and are characterized by the presence of large, flattened spurs at the apex of their hind tibiae. Eggs are deposited inside plant tissues, elliptical in shape, colourless to whitish. Nymphs are similar in appearance to adults except for size, colour, under- developed wing pads and genitalia. 2. Fulgoridae – Eg. lantern bugs They can be recognized with their antennae inserted on the sides & beneath the eyes. -
<I>Tibraca Limbativentris</I> (Hemiptera: Pentatomidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2018 Resistance in Rice to Tibraca limbativentris (Hemiptera: Pentatomidae) Influenced yb Plant Silicon Content Lincoln Luis França University of Goias State, Unidade Universitária de Ipameri, [email protected] Cássio Antonio Dierings Federal Goiano Institute, Campus Urutaí, Rodovia, [email protected] André Cirilo de Sousa Almeida Federal Goiano Institute, Campus Urutaí, Rodovia, [email protected] Marcio da Silva Araújo University of Goias State, Unidade Universitária de Ipameri Elvis Arden Heinrichs University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Agriculture Commons, and the Entomology Commons França, Lincoln Luis; Dierings, Cássio Antonio; de Sousa Almeida, André Cirilo; Araújo, Marcio da Silva; Heinrichs, Elvis Arden; da Silva, Anderson Rodrigo; Freitas Barrigossi, José Alexandre; and de Jesus, Flávio Gonçalves, "Resistance in Rice to Tibraca limbativentris (Hemiptera: Pentatomidae) Influenced yb Plant Silicon Content" (2018). Faculty Publications: Department of Entomology. 900. https://digitalcommons.unl.edu/entomologyfacpub/900 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: -
Hymenoptera) of Meghalaya with Special Reference to Encyrtidae, Mymaridae and Aphelinidae
Journal of Biological Control, 29(2): 49-61, 2015 Research Article Additions to the Chalcidoidea (Hymenoptera) of Meghalaya with special reference to Encyrtidae, Mymaridae and Aphelinidae A. RAMESHKUMAR*, J. POORANI and V. NAVEEN Division of Insect Systematics, ICAR-National Bureau of Agricultural Insect Resources, H. A. Farm post, Bellary road, Hebbal, Bangalore - 560024, Karnataka. *Corresponding author E-mail: [email protected] ABSTRACT: Encyrtidae, Mymaridae and Aphelinidae were surveyed from Ri-Bhoi, Jaintia hills, East Khasi hills, and West Khasi hills districts of Meghalaya in 2013. New distribution records of 55 genera and 61 species of encyrtids, mymarids aphelinids and eucharitids for Meghalaya state are documented. KEY WORDS: Encyrtidae, Mymaridae, Aphelinidae, distributional records, India, Meghalaya (Article chronicle: Received: 01-06-2015; Revised: 21-06-2015; Accepted: 23-06-2015) INTRODUCTION composite images were obtained from image stacks using Combine ZP. The images were arranged in plates in Adobe Studies on the Chalcidoidea fauna of Meghalaya are Photoshop Elements 11. very limited and the state has not been systematically sur- veyed for encyrtids, mymarids and aphelinids though they RESULTS AND DISCUSSION play an important role in natural and applied biological control. Hayat and his co-workers have contributed to the During the survey, 950 specimens of chalcidoids and known fauna of Meghalaya (Hayat, 1998; Hayat, 2006; Ka- other parasitoids were collected. Twenty two species repre- zmi and Hayat, 2012; Zeya and Hayat, 1995). We surveyed senting 16 genera of mymarids, 30 species representing 28 four districts of Meghalaya in 2013 for Chalcidoidea with genera of encyrtids, 10 genera and 8 species of aphelinids particular reference to Encyrtidae, Aphelinidae and My- and Orasema initiator Kerrich of eucharitid are reported maridae and documented several taxa new to the state. -
The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H. -
Insect Orders
CMG GardenNotes #313 Insect Orders Outline Anoplura: sucking lice, page 1 Blattaria: cockroaches and woodroaches, page 2 Coleoptera: beetles, page 2 Collembola: springtails, page 4 Dermaptera: earwigs, page 4 Diptera: flies, page 5 Ephemeroptera: mayflies, page 6 Hemiptera (suborder Heteroptera): true bugs, page 7 Hemiptera (suborders Auchenorrhyncha and Sternorrhyncha): aphids, cicadas, leafhoppers, mealybugs, scale and whiteflies, page 8 Hymenoptera: ants, bees, horntails, sawflies, and wasp, page 9 Isoptera: termites, page 11 Lepidoptera: butterflies and moths, page 12 Mallophaga: chewing and biting lice, page 13 Mantodea: mantids, page 14 Neuroptera: antlions, lacewings, snakeflies and dobsonflies, page 14 Odonata: dragonflies and damselflies, page 15 Orthoptera: crickets, grasshoppers, and katydids, page 15 Phasmida: Walking sticks, page 16 Plecoptera: stoneflies, page 16 Psocoptera: Psocids or booklice, page 17 Siphonaptera: Fleas, page 17 Thysanoptera: Thrips, page 17 Trichoptera: Caddisflies, page 18 Zygentomaa: Silverfish and Firebrats, page 18 Anoplura Sucking Lice • Feeds by sucking blood from mammals. • Some species (head lice and crabs lice) feed on humans. Metamorphosis: Simple/Gradual Features: [Figure 1] Figure 1. Sucking lice o Wingless o Mouthparts: Piercing/sucking, designed to feed on blood. o Body: Small head with larger, pear-shaped thorax and nine segmented abdomen. 313-1 Blattaria (Subclass of Dictyoptera) Cockroaches and Woodroaches • Most species are found in warmer subtropical to tropical climates. • The German, Oriental and American cockroach are indoor pests. • Woodroaches live outdoors feeding on decaying bark and other debris. Metamorphosis: Simple/Gradual Figure 2. American cockroach Features: [Figure 2] o Body: Flattened o Antennae: Long, thread-like o Mouthparts: Chewing o Wings: If present, are thickened, semi-transparent with distinct veins and lay flat. -
Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests. -
Insects That Feed on Trees and Shrubs
INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, -
Insect Classification Standards 2020
RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification. -
~~ 8Ibliografia Del Salivazo De Los Pastos Y La Superfamilia
R~P r ~~ 8IBLIOGRAFIA DEL SALIVAZO DE LOS PASTOS ?~ Y LA SUPERFAMILIA CERCOPOIDEA c,.j Junio de 2001 (671 referencias) csomu Centro Internacional de Agricultura Tropical Internacional Center for Tropical Agriculture U\l ; :--,. ¡· !(t ~ ~~ e.CIO N Y L U l'r'il.\1 ACIUN u 1 DI~. 'uu; lf uO j~ Babhografía del Sahvazo de los Pastos y la Superfamaha Cercopoadea Jun1o de 2001 (671 referencias) Compilada por Dan1el C Peck B1oecolog1a/MIP del Sahvazo Proyecto de Grammeas y Legummosas Trop1cales CIAT Cah Colomb1a Portada Zulta carbonarta Z carbonarta Mahanarva andtgena y Z pubescens(en el sent1do de las manec1llas del reloJ) Fotos por Franc1sco Lopez 1 P ALADRAS CLAVES UTILIZADAS REGION CULTIVO MANEJO BABITAT BIOLOGIA CLASSIFICACION Australia lnd11 lndoncsaa New Zealand axonomy Colombta Ecuador Pero enes S 0 ght synd ome V cnc::zuela orghum asture assessmcnt K. lrawbmy asnm: pests S tylosanthes esbc1dcs uprean hytoto enu ñgrass enmls ro In CODIGOS ASIGNADOS AOI Cerc6p1dos asocl3dos con grammeas C02 Control qWIDJco A02 Otra Cercopmdea C03 Control cultural C04 Res1stenc13 vanetal BOO BIOECOLOOIA C05 Impacto BOl Comportanuento C06 Mane¡o mtegrado de plagas B02 BIO(Ogl3 C07 Cria BOl 013pausa C08 Muestreo & Momtm:eo B04 Eco logia B05 Ománnca poblac!onal 000 HOSPEDEROS B06 Taxonoiillll & S!Stemállca 001 Grammeas fona¡eras 002 Otras grammeas coo MANEJO 003 Caña de azucar COl Control bmlógtco & EnCI1llgos naturales 004 Hospederos no-grammeas 2 Abclui-Nour U., aad L. Labo d.l9!15. RtviSlon du s=e Ph laenus Sial 1864 au Liban aV<Cia descnpuon d\me auvelle~ P mlan1 n sp (Homuplm Auchenoll'hyncha, Cen:o¡ndae) Nouveau Revue d'Entomol"SSe 12(4) 297 303 Key wprds laXonomy Cmopcndea, Phtlaenus As1a, Aphrophondae, A02 ,...-'&<1111 ~ J J J A. -
46601932.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2012) Vol. 5 : 57-72 A preliminary account of the Auchenorrhyncha of the Maltese Islands (Hemiptera) Vera D’URSO1 & David MIFSUD2 ABSTRACT. A total of 46 species of Auchenorrhyncha are reported from the Maltese Islands. They belong to the following families: Cixiidae (3 species), Delphacidae (7 species), Meenoplidae (1 species), Dictyopharidae (1 species), Tettigometridae (2 species), Issidae (2 species), Cicadidae (1 species), Aphrophoridae (2 species) and Cicadellidae (27 species). Since the Auchenorrhyncha fauna of Malta was never studied as such, 40 species reported in this work represent new records for this country and of these, Tamaricella complicata, an eastern Mediterranean species, is confirmed for the European territory. One species, Balclutha brevis is an established alien associated with the invasive Fontain Grass, Pennisetum setaceum. From a biogeographical perspective, the most interesting species are represented by Falcidius ebejeri which is endemic to Malta and Tachycixius remanei, a sub-endemic species so far known only from Italy and Malta. Three species recorded from Malta in the Fauna Europaea database were not found during the present study. KEY WORDS. Malta, Mediterranean, Planthoppers, Leafhoppers, new records. INTRODUCTION The Auchenorrhyncha is represented by a large group of plant sap feeding insects commonly referred to as leafhoppers, planthoppers, cicadas, etc. They occur in all terrestrial ecosystems where plants are present. Some species can transmit plant pathogens (viruses, bacteria and phytoplasmas) and this is often a problem if the host-plant happens to be a cultivated plant. -
Species Distribution Ranking for the Multiple Projects Project Organism Group: Hemiptera Specimens
Species Distribution Ranking for the Multiple Projects Project Organism Group: Hemiptera Specimens Family and Species Sum Of Sites Where Species Was Found Cercopidae Clastoptera obtusa (Spittlebug) 26 Cercopidae Prosapia bicincta (Two-lined spittle bug) 24 Delphacidae Liburniella ornata (Planthopper) 21 Cicadellidae Jikradia olitorius (Leafhopper) 18 Miridae Lygus lineolaris (Tarnished plant bug) 18 Cercopidae Philaenus spumarius (Meadow spittlebug) 18 Berytidae Jalysus spinosus (Stilt bug) 18 Cercopidae Clastoptera xanthocephala (Spittlebug) 16 Cicadellidae Graphocephala coccinea (Leafhopper) 15 Pentatomidae Mormidea lugens (Stink bug) 12 Alydidae Alydus eurinus (Broad-headed bug) 12 Cercopidae Lepyronia quadrangularis (Spittlebug) 11 Pentatomidae Euschistus tristigmus (Stink bug) 11 Rhyparochromidae Pseudopachybrachius basalis (Seed bug) 10 Lygaeidae Kleidocerys resedae (Seed bug) 10 Psyllidae Cacopsylla carpinicola (Psyllid plant bug) 9 Rhopalidae Niesthrea louisianica (Scentless plant bug) 9 Cydnidae Sehirus cinctus (Burrower bug) 9 Cercopidae Aphrophora saratogenesis (Spittlebug) 9 Flatidae Metcalfa pruinosa (Planthopper) 9 Flatidae Anormenis chloris (Planthopper) 9 Psyllidae Bactericera tripunctata (Jumping plant lice) 8 Delphacidae Isodelphax basivitta (Planthopper) 8 Delphacidae Delphacodes puella (Planthopper) 8 Psyllidae Bactericera species (Jumping plant lice) 8 Cercopidae Aphrophora quadrinotata (Spittlebug) 8 Cercopidae Aphrophora cribrata (Pine spittle bug) 7 Pentatomidae Euschistus servus (Stink bug) 7 Membracidae Acutalis -
A New Family of Froghoppers from the American Tropics (Hemiptera: Cercopoidea: Epipygidae)
D I S C O V E R Y A new family of froghoppers from the American tropics (Hemiptera: Cercopoidea: Epipygidae) K. G. Andrew Hamilton outside edge with stout, immobile spines (Figure 2) like those of planthoppers, the Fulgoroidea. The Agriculture and Agri-Food Canada prominently swollen face that houses the sucking Research Branch pump in Cercopoidea (Figures 2-4) immediately Ottawa, Ontario, Canada K1A 0C6 distinguishes them from the flat-faced Fulgoroidea. [email protected] Froghoppers include the insects known as ABSTRACT: Froghoppers (Cercopoidea) are divided “spittlebugs” because their juvenile forms (nymphs) into three families: spittlebugs or Cercopidae, which have an unique biology, living an essentially aquatic are efficient spittle-producers; Clastopteridae existence submerged in frothy masses of plant sap (including subfamily Machaerotinae, new status), (Figure 5). Some other froghopper nymphs live in sap- inefficient spittle-producers and tube-dwellers; and filled tubes (Figures the new-world tropical Epipygidae, a new family 6-10). These tubes SUCKING PUMP known only from small numbers of adult specimens. have been said to be Epipygidae are probably single-brooded, with short- “calcareous” with lived adults that appear to rely mainly on stored body “not less than 75% fat as an energy source. Unlike the related calcium carbonate” spittlebugs they probably lay exposed eggs and have (Ratte 1884) although free-living nymphs. The new genera Epipyga (type- modern studies show species Eicissus tenuifasciatus Jacobi) and Erugissa that they are mainly (type-species Erugissa pachitea sp.nov.) are described made of mucofibrils and Epipyga cribrata (Lethierry), a new combination from (Marshall 1965), Aphrophora, plus Eicissus decipiens Fowler and twenty- which are thick, seven undescribed species are included in the family.