A Prototype Phasing Camera for the Giant Magellan Telescope

Total Page:16

File Type:pdf, Size:1020Kb

A Prototype Phasing Camera for the Giant Magellan Telescope A prototype phasing camera for the Giant Magellan Telescope Srikrishna Kanneganti*a, Brian A. McLeod*a, Mark P. Ordwaya, John B. Roll, Jr.a, Stephen A. Shectmanb, Antonin H. Bouchezb, Johanan Codonac, Roger Enga, Thomas M. Gaurona, Timothy J. Nortona, Phil Streechona, David Weavera aHarvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138; bGiant Magellan Telescope Corporation, P.O. Box 90933, Pasadena, CA, 91109-0933; cSteward Observatory, University of Arizona, Tucson Arizona, 85719 ABSTRACT Achieving the diffraction limit with the adaptive optics system of the 25m Giant Magellan Telescope will require that the 7 pairs of mirror segments be phased. Phasing the GMT is made difficult because of the 30-40cm gaps between the primary mirror segments. These large gaps result in atmospheric induced phase errors making optical phasing difficult at visible wavelengths. The large gaps between the borosilicate mirror segments also make an edge sensing system prone to thermally induced instability. We describe an optical method that uses twelve 1.5-m square subapertures that span the segment boundaries. The light from each subaperture is mapped onto a MEMS mirror segment and then a lenslet array which are used to stabilize the atmospherically induced image motion. Centroids for stabilization are measured at 700nm. The piston error is measured from the fringes visible in each of the 12 stabilized images at 2.2 microns. By dispersing the fringes we can resolve 2! phase ambiguities. We are constructing a prototype camera to be deployed at the 6.5m Magellan Clay telescope. Keywords: segmented telescopes, piston measurement, adaptive optics 1. INTRODUCTION The Giant Magellan Telescope (GMT) will be comprised of seven 8.4-m diameter primary mirror (M1) segments paired with seven adaptive secondary mirrors (M2)1. To reach the diffraction limit of the 25m telescope, each of the seven segment pairs must have exactly the same spacing. Existing segmented telescopes such as the Keck Telescope have relied on edge sensors located in the gaps between the segments to provide the necessary control. The Keck edge sensors are stable enough that they are calibrated interferometrically on sky only at month-long intervals2,3. The GMT segment phasing is more difficult for several reasons. The 30-40cm segment gaps combined with the fact that the mirrors are made of borosilicate glass (non-zero thermal expansion) leads to the concern that a metrology system mounted to the edges of the segments will not be stable enough on timescales longer than a few minutes to maintain the necessary ~30nm differential piston required to meet the GMT adaptive optics error budget4,5. While the metrology systems being designed6 may ultimately have the necessary long-term stability, the baseline plan is to continuously monitor stars at intervals of 60 seconds to maintain the calibration of the high-bandwidth metrology systems7. When the AO system is operating in natural guide star mode, the piston measurements will be derived from the on-axis star as sensed by a pyramid sensor8. However, when operating in laser guide star mode there are no available stars close enough to the optical axis to maintain the required phase coherence between segments. This led us to an approach where we would measure the differential piston across the segment gaps using stars several arcminutes off-axis. We form Young’s double slit images from the twelve 1.5m square subapertures that span segment boundaries. By limiting the measurement to a small subaperture, correcting the tip-tilt of the wavefront in each subaperture, and measuring the fringes in the K-band, enough fringe contrast is preserved to make the necessary piston measurement9 (see Figure 1). *Contact information: [email protected] ; [email protected] We thus set out to build a prototype of such a system and test it on sky to show that we could make piston measurements of the required accuracy using stars of typically available brightness. As the work progressed, a further complication was realized. If the M1 segments tilt with respect to each other (as they will naturally do from flexure due to gravity), and the M2 segments are tilted to compensate, an un-sensed piston variation with field angle will arise. The M1 and M2 metrology systems do not quite have the sensitivity and stability to sense the tilts independently, and no optical test is possible. Thus we were forced to conclude that high-accuracy piston measurements far off-axis would not result in a phased telescope on-axis. This is a problem that is fundamental to telescopes where both M1 and M2 are segmented. The current plan then is to make the piston measurement close to the optical axis using a pyramid sensor in the science instrument with a fainter star10. To be sensitive to piston, the star must corrected with an open-loop deformable mirror using a wavefront derived from the laser tomographic reconstruction. Because this on-instrument pyramid sensor is insensitive to 2! phase ambiguities we will maintain the off-axis piston sensor using it in a dispersed mode, but now requiring lower sensitivity. We have carried the prototype effort forward, adding a dispersion mode to it. Tip-tilt correction of the subapertures is still required to maintain fringe contrast. Thus, in section 2 we describe the instrument. In section 3.1 we describe analysis and lab results for the non-dispersed mode. The parts for the dispersion mode arrived recently and we report initial lab results in section 3.2. As of this writing, the instrument is in transport to Chile where we plan to test it on the Magellan Clay Telescope. Figure 1. Phasing subapertures superposed on GMT pupil (left), and resulting images formed from the marked subaperture with varying amounts of piston between the segments (right). 2. INSTRUMENT DESCRIPTION The instrument will be located on the East Nasmyth platform of the Magellan Clay telescope. The optics are all mounted on an optical bench, which in turn is mounted on a cart with casters. Between the optical bench and the cart are a set of ball transfer plates which allow fine adjustment of the location of the instrument relative to the telescope. The instrument is not bolted onto the Nasmyth rotator, but instead operates in a gravity invariant mode. An overall view of the optics is shown in Figure 3, with a close up view in Figure 4. In the sections below we describe the optical components, following the light from where it enters the instrument, through warm reimaging optics and then into the cryostat where it is split by wavelength and reimaged onto CCD and IR detectors. Figure 2. Photo of the phasing camera prototype. Figure 3. Overall view of instrument optics. 2.1 Focal plane assembly Light source/pinhole For lab testing we insert into the beam at the telescope focus location an incandescent light source shining through a Melles-Griot 10 "m pinhole. The pinhole assembly is on a manually actuated stage to move it in or out of the beam. On the same stage as the pinhole is a mirror with a 0.7mm diameter hole in the center. This 2 arcsec diameter hole will pass light from the telescope into the instrument. The outer parts of the field will be directed to an acquisition camera. Because the mirror feeding the acquisition camera is at the focal plane, the optical quality does not have to be very good. Thus, we use aluminum reflector panel, in which it is easy to drill the on-axis hole. The acquisition camera is a StellaCam3 video camera connected to an Axis M7001 Ethernet-based video encoder. The camera is capable of operating at video rates or delivering still images. Out-of-the-box it comes with a streaming video web interface. It can also take single exposures with controllable exposure time. Figure 4. MEMS relay and cryostat optics 2.2 Warm optics The first set of reimaging optics is warm and converts the f/11 beam to f/27. This produces an image scale nearly identical to what the GMT will produce. It also provides a convenient collimated beam in which to introduce a turbulence phase screen and phase step components. We test the system in closed loop using a Kolmogorov phase screen on a rotary stage, all manufactured by Lexitek. The pupil scale projected at the phase screen is 1.3mm/meter. We have two annuli with equvalent r0(500nm)=0.15m and 0.10cm. Our lab tests were conducted with the plate rotating to give an equivalent windspeed of 17m/s, which is somewhat worse than the median speed integrated over all altitudes. Because the experiment is being carried out on a monolithic telescope, we must artificially provide a phase difference between halves of the phasing aperture. A phase discontinuity can be introduced by inserting at a pupil plane two pieces of glass with identical thickness adjacent to each other in the beam. With a 3mm thick window and a microstepping motor, phase differences from 10nm to >25 microns can be introduced. Microstepping non-linearity is eliminated with a high resolution encoder that is attached to the motor shaft. To characterize how accurately we can measure a phase difference of zero, we can translate the phase adjuster completely out of the beam. Figure 5. Phase adjuster assembly with fixed and rotating glass windows (blue). The entire assembly is mounted on a slide for removal from the beam. 2.3 MEMS Assembly The MEMS relay (see Figure 6) consists of an Aluminum coated 100mm radius spherical mirror in double pass fed by two 5mm right angle prisms. This Offner-style relay forms a pupil on the MEMS mirror.
Recommended publications
  • Overview and Status of the Giant Magellan Telescope Project
    Invited Paper Overview and Status of the Giant Magellan Telescope Project Patrick J. McCarthy*,a,b, James Fansona, Rebecca Bernsteina,b, David Ashbyc, Bruce Bigelowa, Nune Boyadjiana, Antonin Boucheza, Eric Chauvina, Eduardo Donosoa, Jose Filgueiraa, Robert Goodricha, Frank Groarka, George Jacobya, Eric Pearcea aGMTO Corporation, 451 N. Halstead St., Suite 250, Pasadena, CA 91107, USA bCarnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101, USA cLarge Binocular Telescope Observatory, Tucson AZ ABSTRACT The Giant Magellan Telescope Project is in the construction phase. Production of the primary mirror segments is underway with four of the seven required 8.4m mirrors at various stages of completion and materials purchased for segments five and six. Development of the infrastructure at the GMT site at Las Campanas is nearing completion. Power, water and data connections sufficient to support the construction of the telescope and enclosure are in place and roads to the summit have been widened and graded to support transportation of large and heavy loads. Construction pads for the support buildings have been graded and the construction residence is being installed. A small number of issues need to be resolved before the final design of the telescope structure and enclosure can proceed and the GMT team is collecting the required inputs to the decision making process. Prototyping activities targeted at the active and adaptive optics systems are allowing us to finalize designs before large scale production of components begins. Our technically driven schedule calls for the telescope to be assembled on site in 2022 and to be ready to receive a subset of the primary and secondary mirror optics late in the year.
    [Show full text]
  • Experimental Facilities in Latin America
    CLASHEP 2019, Villa General Belgrano, Córdoba, Argentina Experimental Facilities in Latin America Claudio O. Dib Universidad Técnica Federico Santa María, Valparaíso, Chile 7 to 5 Content: • Brief introduction to Particle Physics experiments. • Accelerator Facilities in L.A. • Astronomical Observatories in L.A. (current and future) - VLT, ALMA, DSA3, DES, LSST, GMT, ELT, LLAMA. • Current Astroparticle Facilities in L.A. - Auger - Parenthesis on Cosmic Rays and Extensive Air Showers. - LAGO, HAWC • Future Astroparticle Facilities in L.A. - CTA, ALPACA, LATTES, SGSO, ANDES • Summary 6 to 5 Particle Physics experiments: - Table top experiments E. Rutherford’s lab., Cambridge U. - Cosmic ray detection (Astroparticle Physics) - Accelerators and colliders: (cyclotrons, synchrotrons, linacs; fixed target collisions, colliding beams) 5 to 5 Past table-top experiments 1895: J.J Thomson -> electron J.J. Thomson. Credit: Cambridge U., Cavendish Lab. 1911: E. Rutherford -> nucleus & proton 1932: J. Chadwick -> neutron 4 to 5 J.A. Ratcliffe & E. Rutherford, Cavendish Lab. Cosmic ray experiments • Cosmic rays: radiation that comes from outer space. • Discovered in 1912 by Victor Hess: – Went up a Balloon up to 5300 m: Radiation is higher further above. • Named cosmic rays by R. A. Millikan. Victor F. Hess preparing the baloon flight Cosmic rays are actually… particles! (mainly protons & heavier nuclei) 3 to 5 Robert A. Millikan. Caltech archives. Cosmic ray experiments 1932: C. Anderson discovers the positron. 1947: C. Powell, G. Occhialini, C. Lattes
    [Show full text]
  • The Giant Magellan Telescope. Status
    The Giant Magellan Telescope. Status By Dr. Mauricio Pilleux Head of Administration (Chile) GMTO Corporation [email protected] April 17, 2019 Observatories in Chile: The beginnings … a successful experiment Cerro Tololo Interamerican Observatory AURA, 1962 Magellan telescopes, 2000 Las Campanas Carnegie Institution of Washington, 1968 La Silla ESO, 1969 2 Observatories in Chile: “Second stage” Very Large Telescope (VLT) Cerro Paranal, ESO, 1999 Gemini South Cerro Pachón, 2002 (AURA) ALMA NRAO-ESO-NAOJ, 2013 3 Observatories in Chile: “Stage 3.0” – big, big, big Giant Magellan Telescope (GMT) Cerro Las Campanas, 2023 (GMTO Corporation) European- Extremely Large Telescope (EELT) Cerro Armazones, 2026 (ESO) Large Synoptic Survey Telescope (LSST) Cerro Pachón, 2022 (NSF/AURA-DOE/SLAC) 4 What next? Size (physical) GMT TMT EELT LSST Main Author – Presentation Title Observatories in Chile: Where? ALMA CCAT* Nanten 2 ASTE Paranal Vista ACT 2 3 E-ELT* TAO* Apex CTA* Las Campanas GMT* Polar Bear Simons Obs. La Silla 1 Tololo SOAR Gemini LSST* 6 Giant Magellan Telescope (GMT): Will be the largest in the world in 2022 25 meters in diameter “Price”: US$1340 million First light: 2023 Enclosure is 62 m high Groundbreaking research in: . Exoplanets and their atmospheres . Dark matter . Distant objects . Unknown unknowns 7 Just how tall is the GMT? 46 meters 8 Giant Magellan Telescope (GMT): The world’s largest optical telescope Korea Sao Paulo, Brazil Texas A&M Arizona New partners are welcome! Main Author – Presentation Title 9 Central mirror casting
    [Show full text]
  • Precision Optics Manufacturing and Control for Next-Generation Large
    Nanomanufacturing and Metrology https://doi.org/10.1007/s41871-019-00038-2 REVIEW PAPERS Precision Optics Manufacturing and Control for Next‑Generation Large Telescopes Logan R. Graves1 · Greg A. Smith1 · Dániel Apai2,3 · Dae Wook Kim1,2 Received: 2 December 2018 / Revised: 4 February 2019 / Accepted: 7 February 2019 © International Society for Nanomanufacturing and Tianjin University and Springer Nature Singapore Pte Ltd. 2019 Abstract Next-generation astronomical telescopes will ofer unprecedented observational and scientifc capabilities to look deeper into the heavens, observe closer in time to the epoch of the Big Bang, and resolve fner details of phenomena throughout the universe. The science case for this next generation of observatories is clear, with science goals such as the discovery and exploration of extrasolar planets, exploration of dark matter and dark energy, the formation and evolution of planets, stars, galaxies, and detailed studies of the Sun. Enabling breakthrough astronomical goals requires novel and cutting-edge design choices at all stages of telescope manufacturing. In this paper, we discuss the integrated design and manufacturing of the next-generation large telescopes, from the optical design to enclosures required for optimal performance. Keywords Metrology · Fabrication · Design · Telescope · Optics · Precision 1 Introduction Expanding View of the Universe—Science with the Euro- pean Extremely Large Telescope [2]. To provide these scien- Astronomers studying new phenomena and testing increas- tifc capacities and to advance instrumentation capabilities, ingly detailed models of the universe require ever more pow- the next generation of telescopes (NGT) must provide higher erful instruments to complete their goals and collect photons spatial resolutions, larger light-collecting areas, and more which have traversed immense distances and time, some- sensitive instrumentation.
    [Show full text]
  • A Sodium Laser Guide Star Coupling Efficiency Measurement
    Research in Astronomy and Astrophysics manuscript no. (LATEX: content.tex; printed on September 21, 2021; 19:04) A Sodium laser guide star coupling efficiency measurement method Feng Lu1, Zhi-Xia Shen1, Suijian Xue1, Yang-Peng Li1, Kai Jin2, Angel Otarola4, Yong Bo3, Jun-Wei Zuo3, Qi Bian3, Kai Wei2, Jing-Yao Hu1 1 Key Laboratoryb of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] 2 The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China 3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 4 Thirty Meter Telescope Corporation, Pasadena, California, United States Received 2016; accepted 2016 Abstract Large telescope’s adaptive optics (AO) system requires one or several bright arti- ficial laser guide stars to improve its sky coverage. The recent advent of high power sodium laser is perfect for such application. However, besides the output power, other parameters of the laser also have significant impact on the brightness of the generated sodium laser guide star mostly in non-linear relationships. When tuning and optimizing these parameters it is necessary to tune based on a laser guide star generation performance metric. Although re- turn photon flux is widely used, variability of atmosphere and sodium layer make it difficult to compare from site to site even within short time period for the same site. A new metric, coupling efficiency is adopted in our field tests. In this paper, we will introduce our method for measuring the coupling efficiency of a 20W class pulse sodium laser for AO application during field tests that were conducted during 2013-2015.
    [Show full text]
  • The Physics of the Sodium Laser Guide Star: Predicting and Enhancing the Photon Returns
    THE PHYSICS OF THE SODIUM LASER GUIDE STAR: PREDICTING AND ENHANCING THE PHOTON RETURNS Edward Kibblewhite University of Chicago ABSTRACT Not all lasers give the same photon return/watt and it is this parameter, rather than the raw power generated by the laser, that is the more important figure of merit. In this paper we outline the physical processes involved in calculating this photon return from different types of laser, starting off with the single frequency CW laser developed at the SOR facility. Methods of increasing the return are then discussed and recent experimental results from chirping experiments at Palomar Observatory presented. 1. INCREASING THE COLUMN DENSITY OF SODIUM ATOMS IN THE MESOSPHERE About 100 tons of meteorite burn up in the upper atmosphere every day, producing of about 100 kg of sodium metal [1]. The metal is removed by various complex physical and chemical processes, which ionize the atoms at high altitudes and lock the sodium atoms either into chemicals or on the surface of sub-micron sized “smoke” at altitudes below 85 km [1]. The total mass of sodium available in the entire mesosphere for generating a guide star is about 500 kg, implying a lifetime of about 5 days, with significant annual and diurnal variation. Greatly enhanced short-lived sodium abundances , so-called “sporadic” sodium , occur on shorter time scales which can increase the abundance by over a factor of ten for periods of minutes to hours [2]. Typical column densities are between 2 and 7 x 1013 atoms/m2 with peak densities sometimes exceeded 20 x 1013 atoms/m2 [2].
    [Show full text]
  • The Four-Laser Guide Star Facility: Design Considerations and System Implementation
    Adv. Opt. Techn. 2014; 3(3): 345–361 Research Article Domenico Bonaccini Calia, Wolfgang Hackenberg, Ronald Holzlöhner*, Steffan Lewis and Thomas Pfrommer The Four-Laser Guide Star Facility: Design considerations and system implementation Abstract: Ground-based optical telescopes, in particular object, can be measured with wavefront sensors and ana- large ones, require adaptive optics to overcome the atmos- lyzed by an adaptive optics (AO) system [1, 2]. A correction pheric seeing limit due to turbulence. Correcting the dis- signal is sent to a deformable mirror to correct and flatten torted wavefront necessitates bright stars in the field of the wavefront on atmospheric timescales that are on the view. The sky coverage can be greatly increased by using order of one to several milliseconds. artificial sodium laser guide stars in addition to natu- There is a lack of sufficiently bright stars in the sky that ral guide stars. We describe the underlying physics and can serve as natural guide stars (NGS) for AO. Therefore, technical considerations relevant to such systems before one has to resort to artificial beacons that can be gener- discussing the design of the four-laser guide star facility ated by powerful lasers. The telescope includes wavefront (4LGSF) which is currently under development for the sensors that either image the Rayleigh scattering of those ESO Very Large Telescope (VLT) on Cerro Paranal, Chile. lasers (Rayleigh LGS) or else the resonant scattering from The focus is upon the justification of the requirements and alkali atoms in the mesosphere, typically sodium (sodium their technical solution. LGS). The resolution of large telescopes without AO is Keywords: adaptive optics; adaptive optics facility; ELT; limited by atmospheric turbulence (seeing-limited).
    [Show full text]
  • An Experimental Laser Guide Star Wavefront Sensor Simulator
    An Experimental Laser Guide Star Wavefront Sensor Simulator Olivier Lardi`ere, Rodolphe Conan, Colin Bradley, and Kate Jackson AO Laboratory, Mechanical Engineering Department, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada Glen Herriot NRC–Herzberg Institute of Astrophysics, 5071 W. Saanich Rd, Victoria, BC, V9E 2E7, Canada ABSTRACT Sodium laser guide stars (LGSs) allow, in theory, full sky coverage, but have their own limitations. Variations of sodium layer altitude, thickness and atom density profile induce changing errors on wavefront measurements (LGS aberrations), especially with ELTs for which the LGS spot elongation is larger. In the framework of the Thirty–Meter–Telescope project (TMT), the AO–Lab of the University of Victoria (UVic) built a LGS–simulator test bed in order to assess the performance of new centroiding algorithms for LGS Shack-Hartmann wavefront sensors (SH–WFS). The principle of the LGS–bench is briefly reviewed. The closed–loop performances of the matched filter (MF) algorithm on laboratory 29×29 elongated spot images are presented and compared with the centre of gravity (CoG). The ability of the MF to track the LGS aberrations is successfully demonstrated. The UVic LGS–bench is not limited to SH–WFS and can serve as a LGS–simulator test bed to any other LGS–AO projects for which sodium layer fluctuations are an issue. Keywords: Adaptive Optics, Laser guide star, Wavefront sensing 1. INTRODUCTION Laser guide star (LGS) adaptive optics (AO) systems allow, in theory, full sky coverage, but have their own limitations, such as the tilt indetermination1 and the cone effect.2 With Extremely Large Telescopes (ELTs), other difficulties appear when using a sodium LGS for two main reasons.
    [Show full text]
  • Sodium Laser Guide Star Emulation
    Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF071 SODIUM LASER GUIDE STAR EMULATION I. Price, RSAA, Australian National University, Australia R. Conan, GMTO Corporation, Pasadena, CA 91101, USA Abstract each have a slightly different point of view, as illustrated in In the era of extremely large telescopes (ELT) an adaptive Figure 1. In the era of extremely large telescopes the size of optics (AO) system with artificial guide stars is an essential the primary mirror is significant compared to a 15km long part of the optics between the source and the scientific in- source 90km away. For a 25m diameter telescope, the spot strument. In the case of the Giant Magellan Telescope these elongation for the lenslet the furthest from the laser launch guide stars are formed by stimulating emission from Sodium location will be 9.5”. In contrast, a natural guide star spot atoms in the upper atmosphere with lasers launched from has a typical size of 1”. the side of the telescope. Moreover, they are resolved by the adaptive optics system so Shack-Hartmann wavefront sen- sors record elongated spots. Cost effective proof-of-concept systems for investigating control algorithms must be built for deployment in optics labs or on small telescopes. We present a hardware and software system that mimics the propaga- tion of a single laser guide star (LGS) through the Earth’s atmosphere and the optics of the Giant Magellan Telescope, using source motion and brightness modulation to simulate the source extension. A service oriented architecture allows adaptive optics scientists to construct images from different LGS asterisms and build non-real-time closed-loop control systems in high-level languages.
    [Show full text]
  • Letter of Interest the US Extremely Large Telescope Program
    Snowmass2021 - Letter of Interest The US Extremely Large Telescope Program Topical Group(s): (check all that apply by copying/pasting ☐/☑) ​ ☐ (CF1) Dark Matter: Particle Like ☐ (CF2) Dark Matter: Wavelike ☑ (CF3) Dark Matter: Cosmic Probes ☐ (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe ☐ (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before ☑ (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New ​ Facilities ☑ (CF7) Cosmic Probes of Fundamental Physics ☐ (Other) [Please specify frontier/topical group] ​ Contact Information: Mark Dickinson (NSF’s NOIRLab) [[email protected]] for the US Extremely Large Telescope Program Authors: (long author lists can be placed after the text) ​ Abstract: (maximum 200 words) Progress on m​ any important astrophysical problems requires new observations with substantially higher angular resolution and greater sensitivity than today's optical-infrared telescopes can provide. A new generation of Extremely Large Telescopes (ELTs) with >20m primary mirror diameters, operating with next-generation adaptive optics systems that deliver diffraction-limited image quality, will provide transformational new research capabilities. ELTs will enable major advances in several research topics within the Cosmic Frontiers theme including the nature of dark matter; unprecedentedly precise measurement of the cosmic expansion rate; the physics of compact object mergers identified by gravitational wave events; and tests of General Relativity's description of gravity in close proximity to the supermassive black hole in the center of our Galaxy. The US ELT Program, a collaboration between NSF's NOIRLab and the Thirty Meter Telescope and Giant Magellan Telescope projects, proposes to complete construction of a bi-hemispheric system that will provide US researchers with unique ELT coverage of the whole sky and a powerful suite of instruments.
    [Show full text]
  • Wide Field Astronomical Image Compensation with Multiple Laser-Guided Adaptive Optics
    Invited Paper Wide field astronomical image compensation with multiple laser-guided adaptive optics Michael Hart, N. Mark Milton, Christoph Baranec,* Thomas Stalcup, Keith Powell, Eduardo Bendek, Don McCarthy, and Craig Kulesa Center for Astronomical Adaptive Optics, The University of Arizona, Tucson, AZ 85721 *California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 ABSTRACT We report closed-loop results obtained from the first adaptive optics system to deploy multiple laser guide beacons. The system is mounted on the 6.5 m MMT telescope in Arizona, and is designed to explore advanced altitude-conjugated techniques for wide-field image compensation. Five beacons are made by Rayleigh scattering of laser beams at 532 nm integrated over a range from 20 to 29 km by dynamic refocus of the telescope optics. The return light is analyzed by a unique Shack-Hartmann sensor that places all five beacons on a single detector, with electronic shuttering to implement the beacon range gate. Wavefront correction is applied with the telescope's unique deformable secondary mirror. The system has now begun operations as a tool for astronomical science, in a mode in which the boundary-layer turbulence, close to the telescope, is compensated. Image quality of 0.2-0.3 arc sec is routinely delivered in the near infrared bands from 1.2–2.5 μm over a field of view of 2 arc min. Although it does not reach the diffraction limit, this represents a 3 to 4-fold improvement in resolution over the natural seeing, and a field of view an order of magnitude larger than conventional adaptive optics systems deliver.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]