The Physics of the Sodium Laser Guide Star: Predicting and Enhancing the Photon Returns

Total Page:16

File Type:pdf, Size:1020Kb

The Physics of the Sodium Laser Guide Star: Predicting and Enhancing the Photon Returns THE PHYSICS OF THE SODIUM LASER GUIDE STAR: PREDICTING AND ENHANCING THE PHOTON RETURNS Edward Kibblewhite University of Chicago ABSTRACT Not all lasers give the same photon return/watt and it is this parameter, rather than the raw power generated by the laser, that is the more important figure of merit. In this paper we outline the physical processes involved in calculating this photon return from different types of laser, starting off with the single frequency CW laser developed at the SOR facility. Methods of increasing the return are then discussed and recent experimental results from chirping experiments at Palomar Observatory presented. 1. INCREASING THE COLUMN DENSITY OF SODIUM ATOMS IN THE MESOSPHERE About 100 tons of meteorite burn up in the upper atmosphere every day, producing of about 100 kg of sodium metal [1]. The metal is removed by various complex physical and chemical processes, which ionize the atoms at high altitudes and lock the sodium atoms either into chemicals or on the surface of sub-micron sized “smoke” at altitudes below 85 km [1]. The total mass of sodium available in the entire mesosphere for generating a guide star is about 500 kg, implying a lifetime of about 5 days, with significant annual and diurnal variation. Greatly enhanced short-lived sodium abundances , so-called “sporadic” sodium , occur on shorter time scales which can increase the abundance by over a factor of ten for periods of minutes to hours [2]. Typical column densities are between 2 and 7 x 1013 atoms/m2 with peak densities sometimes exceeded 20 x 1013 atoms/m2 [2]. It is remarkable that so little sodium metal can backscatter even a few per cent of the radiation from a laser beam and it is conceivable that a few tens of kg of sodium metal, suitability dispersed, could greatly increase the brightness of the LGS locally but for periods of hours. Should such a technology prove feasible, the use of potassium metal, which occurs at a favorable wavelength for laser technology and could allow two-frequency LGS AO, might be even more effective. Such a strategy would be expensive but might of value for important transient targets. In the meantime the only way to increase the return is to build either more powerful lasers or improve the efficiency of producing photons from the sodium atoms. 2. OPTICAL PUMPING IN THE SODIUM ATOM It is well known [5] that, for the D2 line used to produce laser guide stars, the sodium atom has two ground levels, an upper F=2 state and a lower F = 1 state, with 5/8 of the atoms being in the F=2 state under conditions of thermal equilibrium. The upper F levels is split into 4 hyperfine sublevels each separted by some tens of MHz. All levels are additionally divided into different M levels, which have the same energy but different cross-sections to the radiation field. A simplified energy diagram of the atom is shown in figure 1. If right handed circularly polarized photon of the appropriate frequency excites a sodium atom in the (2,M) ground state to the upper (3,M+1) level, it can decay to the (2,M), (2,M+1) or (2,M+2) ground level. If this is repeated and in the absence of other effects, the atom will then be optical pumped into a stable transition between the (2,2) and (3,3) state after a small number of cycles. Since this transition has the highest cross-section to the radiation field and highest backscattering efficency to ground, this optical pumping mechanism is very useful in increasing the photo return. We should note that the enhanced return is not only because of the enhanced backscatter return for this transition (a factor of 1.5 compared to isotropic scattering) but also because the cross-section is a factor of about 2 higher than the cross-section averaged over all M levels. We expect an increase in photon return of a factor of about 3 and this has been observed at MIT/Lincoln Labs with a suitably tailored laser spectral format and a well resolved spot [3]. However, we can also see from figure 1 that the photon return can be significantly reduced by depopulation of the F=2 ground state by another optical pumping process as follows. If the sodium atom is moving in slightly different direction, the energy diagram may favor transitions from the F =2 ground state to either the F=1 or F=2 upper state. For these excited atoms there is now a choice of ground state; an atom starting in the same ground (2,0) level may get excited to the upper (2,1) or even the (1,1) level and on decay may go either to the original F=2 ground state or the F=1 ground state. Because the energy separation between the two ground states (1.77 GHz) is substantially larger than the Doppler linewidth (500MHz HWHM), an atom pumped to the F=1 state will have minimal photon interaction with a single frequency laser tuned to pump atoms in the F=2 ground level and the photon return will be correspondingly reduced. There are thus two competing optical pumping processes at work, one pumping the atom to a favorable and stable (2,2) to (3,3) transition and one pumping atoms depopulating the upper ground state so that they no longer interact with a single frequency laser beam. Figure 1: Simplified energy diagram of the Sodium D2 transitions. The two ground states are separated by 1.771 GHz. 3. INTERACTION OF THE SODIUM ATOM WITH ITS ENVIRONMENT Other physical processes are also important and the environment of the mesosphere plays a critical role in the laser-atomic interactions. Firstly, the natural linewidth of the D2 line is only 10 MHz FWHM, which is much narrower than the Doppler width of 1 GHz for atoms at temperature of 200oK. This is shown in figure 2 F=2 -> F=3 Velocity distribution F=2 -> F=2 F=2 -> F=1 Figure 2: Doppler line of sight velocity distribution of sodium atoms in the mesosphere compared to the natural line width of the sodium D2 line Let us assume that that a single frequency CW laser is tuned to the zero velocity frequency of the F=2 to F=3 transition of the D2 line. Because the natural line-width is so narrow, only a few per cent of the atoms, moving in a direction approximately orthogonal to the laser beam, have a strong interaction with the radiation field. An atom with a zero line of sight velocity will absorb and spontaneously reemit one photon every 170 nsec for a laser beam intensity of 10 watts/m2 and will continue to reemit photons until it collides with an air molecule. It will then usually move in different direction and only minimally interact with the radiation field, until it finds itself again with another near-zero line of sight velocity after yet another collision. Sodium atoms in the mesosphere therefore emit photons in bursts when excited by a single frequency laser. A sodium atom that has made either the transition to the upper F=1 or F=2 state has about an even chance of ending up in the lower F=1 ground level. Transitions to these upper F=1 and F=2 levels produce little extra light but enable substantial loss of atoms in the F=2 ground state to occur. It is important to realize that these transitions effect the total population of sodium atoms because even atoms moving in a direction hundreds of MHz from the laser line still have a small chance of interaction with the radiation field and, over a collision lifetime (100 µsec), can get pumped to the lower level - a cycle time of 50 µs is all that may be needed for a velocity class to be depopulated. This is shown in figure 3, which presents the number of atoms in the upper level as a function of Doppler velocity after a collision lifetime of 100 µsec. The laser has an intensity a 200 w/m2, which typical for next generation LGS AO facilities. If there were no depopulation pumping, the curve would follow the conventional Doppler Gaussian curve, with a FWHM of about 1 GHz. Because of depopulation, a single frequency laser depopulates about 40% of the atoms in the upper ground state in100 µseconds (figure 3a). The situation is much worse for multi-line lasers, such as are used at the Gemini Observatory, essentially all the atoms being pumped to the lower level after 100 µseconds (figure 3b) 14 25 (a) 12 F=2 population with no (b) depopulation 10 20 F=2 population 8 15 with depopulation 6 10 4 5 2 - 1000 - 500 500 1000 - 1000 - 500 500 1000 Line of sight velocity in MHz Line of sight velocity in MHz Fig ure 3: Po pulation remainin g in the F=2 grou nd state after a 100 µsecond collision lifetime for a laser intensity 2 of 2 00 w/m . These figures include the effects of radiation pressure, Zenith pointing, 0.5 gauss magnetic field at an angle of 300 to the laser beam. (a) is for a single frequency CW laser (b) is for a laser with lines spaced 98 MHz apart under a Gaussian envelop of 800 MHz FWHM. Spin Exchange Collisions of sodium atoms with nitrogen molecules cannot bring the ground states back into thermal equilibrium. If this was the only mechanism for rethermalization we would be dependent on the flow of new atoms into the laser beam either by diffusion or mesospheric wind [5], both of which have typical time scales of a few milliseconds.
Recommended publications
  • A Sodium Laser Guide Star Coupling Efficiency Measurement
    Research in Astronomy and Astrophysics manuscript no. (LATEX: content.tex; printed on September 21, 2021; 19:04) A Sodium laser guide star coupling efficiency measurement method Feng Lu1, Zhi-Xia Shen1, Suijian Xue1, Yang-Peng Li1, Kai Jin2, Angel Otarola4, Yong Bo3, Jun-Wei Zuo3, Qi Bian3, Kai Wei2, Jing-Yao Hu1 1 Key Laboratoryb of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] 2 The Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China 3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 4 Thirty Meter Telescope Corporation, Pasadena, California, United States Received 2016; accepted 2016 Abstract Large telescope’s adaptive optics (AO) system requires one or several bright arti- ficial laser guide stars to improve its sky coverage. The recent advent of high power sodium laser is perfect for such application. However, besides the output power, other parameters of the laser also have significant impact on the brightness of the generated sodium laser guide star mostly in non-linear relationships. When tuning and optimizing these parameters it is necessary to tune based on a laser guide star generation performance metric. Although re- turn photon flux is widely used, variability of atmosphere and sodium layer make it difficult to compare from site to site even within short time period for the same site. A new metric, coupling efficiency is adopted in our field tests. In this paper, we will introduce our method for measuring the coupling efficiency of a 20W class pulse sodium laser for AO application during field tests that were conducted during 2013-2015.
    [Show full text]
  • The Four-Laser Guide Star Facility: Design Considerations and System Implementation
    Adv. Opt. Techn. 2014; 3(3): 345–361 Research Article Domenico Bonaccini Calia, Wolfgang Hackenberg, Ronald Holzlöhner*, Steffan Lewis and Thomas Pfrommer The Four-Laser Guide Star Facility: Design considerations and system implementation Abstract: Ground-based optical telescopes, in particular object, can be measured with wavefront sensors and ana- large ones, require adaptive optics to overcome the atmos- lyzed by an adaptive optics (AO) system [1, 2]. A correction pheric seeing limit due to turbulence. Correcting the dis- signal is sent to a deformable mirror to correct and flatten torted wavefront necessitates bright stars in the field of the wavefront on atmospheric timescales that are on the view. The sky coverage can be greatly increased by using order of one to several milliseconds. artificial sodium laser guide stars in addition to natu- There is a lack of sufficiently bright stars in the sky that ral guide stars. We describe the underlying physics and can serve as natural guide stars (NGS) for AO. Therefore, technical considerations relevant to such systems before one has to resort to artificial beacons that can be gener- discussing the design of the four-laser guide star facility ated by powerful lasers. The telescope includes wavefront (4LGSF) which is currently under development for the sensors that either image the Rayleigh scattering of those ESO Very Large Telescope (VLT) on Cerro Paranal, Chile. lasers (Rayleigh LGS) or else the resonant scattering from The focus is upon the justification of the requirements and alkali atoms in the mesosphere, typically sodium (sodium their technical solution. LGS). The resolution of large telescopes without AO is Keywords: adaptive optics; adaptive optics facility; ELT; limited by atmospheric turbulence (seeing-limited).
    [Show full text]
  • An Experimental Laser Guide Star Wavefront Sensor Simulator
    An Experimental Laser Guide Star Wavefront Sensor Simulator Olivier Lardi`ere, Rodolphe Conan, Colin Bradley, and Kate Jackson AO Laboratory, Mechanical Engineering Department, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada Glen Herriot NRC–Herzberg Institute of Astrophysics, 5071 W. Saanich Rd, Victoria, BC, V9E 2E7, Canada ABSTRACT Sodium laser guide stars (LGSs) allow, in theory, full sky coverage, but have their own limitations. Variations of sodium layer altitude, thickness and atom density profile induce changing errors on wavefront measurements (LGS aberrations), especially with ELTs for which the LGS spot elongation is larger. In the framework of the Thirty–Meter–Telescope project (TMT), the AO–Lab of the University of Victoria (UVic) built a LGS–simulator test bed in order to assess the performance of new centroiding algorithms for LGS Shack-Hartmann wavefront sensors (SH–WFS). The principle of the LGS–bench is briefly reviewed. The closed–loop performances of the matched filter (MF) algorithm on laboratory 29×29 elongated spot images are presented and compared with the centre of gravity (CoG). The ability of the MF to track the LGS aberrations is successfully demonstrated. The UVic LGS–bench is not limited to SH–WFS and can serve as a LGS–simulator test bed to any other LGS–AO projects for which sodium layer fluctuations are an issue. Keywords: Adaptive Optics, Laser guide star, Wavefront sensing 1. INTRODUCTION Laser guide star (LGS) adaptive optics (AO) systems allow, in theory, full sky coverage, but have their own limitations, such as the tilt indetermination1 and the cone effect.2 With Extremely Large Telescopes (ELTs), other difficulties appear when using a sodium LGS for two main reasons.
    [Show full text]
  • Sodium Laser Guide Star Emulation
    Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF071 SODIUM LASER GUIDE STAR EMULATION I. Price, RSAA, Australian National University, Australia R. Conan, GMTO Corporation, Pasadena, CA 91101, USA Abstract each have a slightly different point of view, as illustrated in In the era of extremely large telescopes (ELT) an adaptive Figure 1. In the era of extremely large telescopes the size of optics (AO) system with artificial guide stars is an essential the primary mirror is significant compared to a 15km long part of the optics between the source and the scientific in- source 90km away. For a 25m diameter telescope, the spot strument. In the case of the Giant Magellan Telescope these elongation for the lenslet the furthest from the laser launch guide stars are formed by stimulating emission from Sodium location will be 9.5”. In contrast, a natural guide star spot atoms in the upper atmosphere with lasers launched from has a typical size of 1”. the side of the telescope. Moreover, they are resolved by the adaptive optics system so Shack-Hartmann wavefront sen- sors record elongated spots. Cost effective proof-of-concept systems for investigating control algorithms must be built for deployment in optics labs or on small telescopes. We present a hardware and software system that mimics the propaga- tion of a single laser guide star (LGS) through the Earth’s atmosphere and the optics of the Giant Magellan Telescope, using source motion and brightness modulation to simulate the source extension. A service oriented architecture allows adaptive optics scientists to construct images from different LGS asterisms and build non-real-time closed-loop control systems in high-level languages.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]
  • Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness
    From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness Céline d’Orgeville Advanced Instrumentation and Technology Centre, Research School of Astronomy and Astrophysics, Australian National University; Space Environment Research Centre, Canberra, Australia Gregory J. Fetzer Areté Associates, Longmont, Colorado, USA ABSTRACT This paper recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analyzing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980s and 1990s. These experimental systems were turned into the first laser guide star facilities to equip medium- to-large diameter adaptive optics telescopes, opening a new era of Laser Guide Star Adaptive Optics (LGS AO)- enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000s that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8 to 10m-class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date.
    [Show full text]
  • LGS AO Science Impact: Present and Future Perspectives
    LGS AO Science Impact: Present and Future Perspectives Michael C. Liua aInstitute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822; USA ABSTRACT The recent advent of laser guide star adaptive optics (LGS AO) on the largest ground-based telescopes has enabled a wide range of high angular resolution science, previously infeasible from ground-based and/or space- based observatories. As a result, scientific productivity with LGS has seen enormous growth in the last few years, with a factor of ≈10 leap in publication rate compared to the first decade of operation. Of the 54 refereed science papers to date from LGS AO, half have been published in the last ≈2 years, and these LGS results have already made a significant impact in a number of areas. At the same time, science with LGS AO can be considered in its infancy, as astronomers and instrumentalists are only beginning to understand its efficacy for measurements such as photometry, astrometry, companion detection, and quantitative morphology. We examine the science impact of LGS AO in the last few years of operations, largely due to the new system on the Keck II 10-meter telescope. We review currently achieved data quality, including results from our own ongoing brown dwarf survey with Keck LGS. We assess current and near-future performance with a critical eye to LGS AO’s capabilities and deficiencies. From both qualitative and quantitative considerations, it is clear that the era of regular and important science from LGS AO has arrived. Keywords: Adaptive optics, laser guide stars, high angular resolution, brown dwarfs, Keck Telescope 1.
    [Show full text]
  • Lectures 10 and 11 Laser Guide Stars
    Lectures 10 and 11 Laser Guide Stars Claire Max Astro 289, UC Santa Cruz February 11 and 16, 2016 Page 1 First, some images of the summit of Mauna Kea, HI • Keck 2 Subaru Page 2 • Movie of 3 lasers in operation on Mauna Kea, HI: https://vimeo.com/24338510 Page 3 Outline of lectures on laser guide stars • Why are laser guide stars needed? • Principles of laser scattering in the atmosphere – Rayleigh scattering, resonant scattering from sodium • What is the sodium layer? How does it behave? • Physics of sodium atom excitation • Lasers used in astronomical laser guide star AO • Wavefront errors for laser guide star AO Page 4 Laser guide stars: Main points • Laser guide stars are needed because there aren’t enough bright natural guide stars in the sky – Hence YOUR favorite galaxy probably won’t have a bright enough natural guide star nearby • Solution: make your own guide star using lasers – Nothing special about coherent light - could use a flashlight hanging from a “giant high-altitude helicopter” – Size on sky has to be ≲ diffraction limit of a WFS sub-aperture • Laser guide stars have pluses and minuses: – Pluses: can put them anywhere, can be bright – Minuses: NGS give better AO performance than LGS even when both are working perfectly. High-powered lasers are tricky to build and work with. Laser safety is added complication. Page 5 Two types of laser guide stars in use today: “Rayleigh” and “Sodium” • Sodium guide stars: excite atoms in “sodium layer” at ~ 95 km altitude of ~ 95 km • Rayleigh guide stars: Rayleigh scattering from air molecules sends light back into telescope, h ~ 10 km 8-12 km • Higher altitude of sodium layer is closer to sampling the same turbulence that a star from “infinity” passes Turbulence through Telescope Page 6 Reasons why laser guide stars can’t do as well as bright natural guide stars 1) Laser light is spread out by turbulence on the way up.
    [Show full text]
  • Issue 34, June 2007
    June2007 June2007 In This Issue: Director’s Viewpoint 4 Doug Simons 6 New Instrumentation for Gemini Telescopes Joseph Jensen 37 Recent Science Highlights Jean-René Roy & Scott Fisher On The Cover: Gemini laser guide star adaptive optics image Science of Seeing: of the “bullets” region 46 of the Orion Nebula An International in the near infrared. For more details see the Symposium center section of this issue, page 29. Peter Michaud & François Rigaut 2 Gemini Observatory www.gemini.edu GeminiFocus 14 New Views of Neptune Heidi B. Hammel 18 18 O & Origin of Two Types of Rare Carbon Stars Thomas R. Geballe & Geoffrey C. Clayton Tightening the 22 (Asteroid) Belt Around Comet McNaught captured by Marie-Claire Hainaut Zeta Leporis Margaret Moerchen Chad Trujillo 25 Flows and Jets in 52 H II Regions Profile John Lacy Carolyn Collins Petersen Sophía Páez 28 Understanding 55 Gamma-ray Bursts Profile Alicia Soderberg & Edo Berger Carolyn Collins Petersen The Delicate Trails of AstroDay Chile 29 57 María Antonieta Garcia Starbirth Poster/Pictorial 59 Hawaii’s “Journey Through the Universe” 35 Rapid Target of Opportunity Mode 2007 Katherine Roth A Photo Montage 42 Gemini’s Dataflow Project Dennis Crabtree, Paul Hirst, Managing Editor, Peter Michaud Kathleen Labrie & Kim Gillies Science Editor, Scott Fisher 49 Earthquake Recovery Associate Editor, Carolyn Collins Petersen & Workshop Designer, Kirk Pu‘uohau-Pummill Michael Sheehan 3 Gemini Observatory www.gemini.edu June2007 by Doug Simons Director, Gemini Observatory Planning Gemini’s Future ustainability–this is a word I find myself asking also left with a staff that, in many respects, retains a about a lot around Gemini Observatory lately.
    [Show full text]
  • Media Information Kit
    Media Information Kit VISION OF THE W. M. KECK OBSERVATORY A world in which all humankind is inspired and united by the pursuit of knowledge of the infinite variety and richness of the Universe. MISSION STATEMENT To advance the frontiers of astronomy and share our discoveries inspiring the imagination of all. OBSERVATORY CONTACT INFORMATION Rich Matsuda, Communications (interim) [email protected] W. M. Keck Observatory 65‐1120 Mamalahoa Highway Kamuela, Hawaii 96743 ON THE WEB Website: http://keckobservatory.org Facebook: http://www.facebook.com/KeckObservatory Twitter: https://twitter.com/KeckObservatory Vimeo: https://vimeo.com/keckobservatory ABOUT THE W. M. KECK OBSERVATORY The revolutionary twin Keck telescopes are the largest fully steerable optical/infrared telescopes on Earth and are able to see fainter and further into the cosmos than any other current research facility. Each telescope stands eight stories tall, weighs 300 tons and operates with nanometer precision. The telescopes’ primary mirrors are 10 meters in diameter and are each composed of 36 hexagonal segments that work in concert as a single piece of reflective glass. In 1985, the W.M. Keck Foundation gave $70 million to begin the construction of the Keck I telescope. While still under construction, the foundation funded another $68 million to build Keck II. Science operations for Keck I telescope began in 1993, Keck II in 1996. The Observatory is managed as a non-profit 501(c)3 corporation whose board of directors includes representatives from the California Institute of Technology (Caltech) and the University of California (UC). Representatives from the National Aeronautics and Space Administration (NASA) and the W.
    [Show full text]
  • The Semiconductor Guidestar Laser: a Novel, Affordable, Low Swap Sodium Guidestar Laser for Adaptive Optics Tracking of Space Objects
    The Semiconductor Guidestar Laser: A novel, affordable, low SWaP sodium guidestar laser for adaptive optics tracking of space objects Associate Professor Celine d’Orgeville ANU Advanced Instrumentation and Technology Centre (AITC) Mount Stromlo Observatory, Canberra, Australia 8 November 2018 Outline • Adaptive Optics research @ ANU AITC • Laser Guide Star Adaptive Optics (LGS AO) 101 • 4 generations of sodium guidestar laser technologies • ANU Semiconductor Guidestar Laser program 2018 IWLR 2 Adaptive Optics Research @ ANU Advanced Instrumentation and Technology Centre (AITC) • World-leading AO research and development team: – 8-9 AO/laser/RTC instrument scientists – 4-6 postgraduates & 10-20 undergraduates – Supported by 20-25 ANU AITC engineering staff • ANU AO program: research funding & commercial contracts – Astronomy on 8-40m telescopes (e.g. ESO VLT, Gemini, Keck, Subaru, GMT, ELT): LGS AO, GLAO, LTAO, MCAO – Laser communications (e.g. DST Group, ACT Government, Quintessence Labs, NICT): horizontal, space to ground, and ground to space – Space Situational Awareness (e.g. SERC, KASI): AOI, AOTP Image Credit: Giant Magellan Telescope Organization 2018 IWLR 3 Laser Guide Star Adaptive Optics (LGS AO) 101 • Adaptive Optics – Wavefront sensor measures wavefront distortions caused by atmospheric turbulence – Deformable mirror corrects for these distortions in real time • Laser Guide Star – Provides a reference source if/where none is available Image Credit: National Astronomical Observatory Japan 2018 IWLR 4 Influence of Seeing Original image telescope diameter Example of an Iridium satellite (Strehl ratio ~ 30%) AO Imaging of space objects AOI Simulations Credit: F. Rigaut (ANU) 1.5-m 2.5-m 4.0-m 2018 IWLR 5 AO Tracking & Pushing • SERC Research Programs 1 & 4 (ANU, EOS Space Systems, Lockheed Martin) • Objective: Mitigation of debris to debris collisions using photon pressure from AO- compensated high power IR laser Image credit: D.
    [Show full text]
  • Space-Based Laser Guide Star Mission to Enable Ground and Space Telescope Observations of Faint Objects
    Space-Based Laser Guide Star Mission to Enable Ground and Space Telescope Observations of Faint Objects Kerri Cahoy, James Clark, Gregory Allan, Yinzi Xin Department of Aeronautics and Astronautics Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA 02139; (617) 253-8541 [email protected], [email protected] Ewan Douglas, Jennifer Lumbres, Jared Males University of Arizona [email protected] ABSTRACT We present the detailed design of a Laser Guide Star small satellite that would formation fly with a large space observatory or fly with respect to a ground telescope that use adaptive optics (AO) for wavefront sensing and control. Using the CubeSat form factor for the Laser Guide Star small satellite, we develop a 12U system to accommodate a propulsion system. The propulsion system enables the LGS satellite to formation fly near the targets in the telescope boresight and to meet mission requirements on number of targets and duration. We simulate the formation flight at L2 to assess the precision required to enable the wavefront sensing and control during observation. We describe a design reference mission (DRM) for deploying 18 Laser Guide Stars to L2 to assist the Large Ultraviolet, Optical, Infrared Surveyor (LUVOIR). The L2 LGS DRM covers over 250 exoplanet target systems with 5 or more revisits to each system over a 5-year mission using eighteen 12U CubeSats. We present a design reference mission for a laser guide star satellite to geostationary orbit for use with 6.5+ meter ground telescopes with AO to look at HD 50281, HD 180617, and other near-equatorial targets.
    [Show full text]