Convex Ana Lysis General Vector Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Convex Ana Lysis General Vector Spaces Convex Ana lysis General Vector Spaces C Zalinescu World Scientific Convex Analysis i n General Vector Spaces This page is intentionally left blank Convex Analysis 1 n General Vector Spaces C Zalinescu Faculty of Mathematics University "Al. I. Cuza" lasi, Romania B% World Scientific • New Jersey • London • Singapore •• Hong Kong Published by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 912805 USA office: Suite IB, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Zalinescu, C, 1952- Convex analysis in general vector spaces / C. Zalinescu p. cm. Includes bibliographical references and index. ISBN 9812380671 (alk. paper) 1. Convex functions. 2. Convex sets. 3. Functional analysis. 4. Vector spaces. I. Title. QA331.5.Z34 2002 2002069000 515'.8-dc21 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2002 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore by Uto-Print To the memory of my parents Casandra and Vasile Zalinescu This page is intentionally left blank Preface The text of this book has its origin in a course we delivered to students for Master Degree at the Faculty of Mathematics of the University "Al. I. Cuza" Ia§i, Romania. One can ask if another book on Convex Analysis is needed when there are many excellent books dedicated to this discipline like those written by R.T. Rockafellar (1970), J. Stoer and C. Witzgall (1970), J.-B. Hiriart- Urruty and C. Lemarechal (1993), J.M. Borwein and A. Lewis (2000) for finite dimensional spaces and by P.-J. Laurent (1972), I. Ekeland and R. Temam (1974), R.T. Rockafellar (1974), A.D. Ioffe and V.M. Tikhomirov (1974), V. Barbu and Th. Precupanu (1978, 1986), J.R. Giles (1982), R.R. Phelps (1989, 1993), D. Aze (1997) for infinite dimensional spaces. We think that such a book is necessary for taking into consideration new results concerning the validity of the formulas for conjugates and sub- differentials of convex functions constructed from other convex functions by operations which preserve convexity, results obtained in the last 10-15 years. Also, there are classes of convex functions like uniformly convex, uniformly smooth, well behaving, well conditioned functions that are not studied in other books. Characterizations of convex functions using other types of derivatives or subdifferentials than usual directional derivatives or Fenchel subdifferential are quite recent and deserve being included in a book. All these themes are treated in this book. We have chosen for studying convex functions the framework of locally convex spaces and the most general conditions met in the literature; even when restricted to normed vector spaces many results are stated in more general conditions than the corresponding ones in other books. To make vii Vlll Preface this possible, in the first chapter we introduce several interiority and closed- ness conditions and state two strong open mapping theorems. In the second chapter, besides the usual characterizations and properties of convex functions we study new classes of such functions: cs-convex, cs- closed, cs-complete, lcs-closed, ideally convex, bcs-complete and li-convex functions, respectively; note that the classes of li-convex and lcs-closed functions have very good stability properties. This will give the possibility to have a rich calculus for the conjugate and the subdifferential of convex functions under mild conditions. In obtaining these results we use the method of perturbation functions introduced by R.T. Rockafellar. The main tool is the fundamental duality formula which is stated under very general conditions by using open mapping theorems. The framework of the third chapter is that of infinite dimensional normed vector spaces. Besides some classical results in convex analysis we give characterizations of convex functions using abstract subdifferentials and study differentiability of convex functions. Also, we introduce and study well-conditioned convex functions, uniformly convex and uniformly smooth convex functions and their applications to the study of the geometry of Banach spaces. In connection with well-conditioned functions we study the sets of weak sharp minima, well-behaved convex functions and global error bounds for convex inequality systems. The chapter ends with the study of monotone operators by using convex functions. Every chapter ends with exercises and bibliographical notes; there are more than 80 exercises. The statements of the exercises are generally ex­ tracted from auxiliary results in recent articles, but some of them are known results that deserve being included in a textbook, but which do not fit very well our aims. The complete solutions of all exercises are given. The book ends with an index of terms and a list of symbols and notations. Even if all the results with the exception of those in the first section are given with their complete proofs, for a successful reading of the book a good knowledge of topology and topological vector spaces is recommended. Finally I would like to thank Prof. J.-P. Penot and Prof. A. Gopfert for reading the manuscript, for their remarks and encouragements. C. Zalinescu March 1, 2002 Ia§i, Romania Contents Preface vii Introduction xi Chapter 1 Preliminary Results on Functional Analysis 1 1.1 Preliminary notions and results 1 1.2 Closedness and interiority notions 9 1.3 Open mapping theorems 19 1.4 Variational principles 29 1.5 Exercises 34 1.6 Bibliographical notes 36 Chapter 2 Convex Analysis in Locally Convex Spaces 39 2.1 Convex functions 39 2.2 Semi-continuity of convex functions 60 2.3 Conjugate functions 75 2.4 The subdifferential of a convex function 79 2.5 The general problem of convex programming 99 2.6 Perturbed problems 106 2.7 The fundamental duality formula 113 2.8 Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions 121 2.9 Convex optimization with constraints 136 2.10 A minimax theorem 143 2.11 Exercises 146 2.12 Bibliographical notes 155 ix x Contents Chapter 3 Some Results and Applications of Convex Analy­ sis in Normed Spaces 159 3.1 Further fundamental results in convex analysis 159 3.2 Convexity and monotonicity of subdifferentials 169 3.3 Some classes of functions of a real variable and differentiability of convex functions 188 3.4 Well conditioned functions 195 3.5 Uniformly convex and uniformly smooth convex functions . 203 3.6 Uniformly convex and uniformly smooth convex functions on bounded sets 221 3.7 Applications to the geometry of normed spaces 226 3.8 Applications to the best approximation problem 237 3.9 Characterizations of convexity in terms of smoothness 243 3.10 Weak sharp minima, well-behaved functions and global error bounds for convex inequalities 248 3.11 Monotone multifunctions 269 3.12 Exercises 288 3.13 Bibliographical notes 292 Exercises - Solutions 297 Bibliography 349 Index 359 Symbols and Notations 363 Introduction The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to give important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation prob­ lems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions. The method of perturbation functions is based on the "fundamental duality theorem" which says that under certain conditions one has inf $(i, 0) = max_ ( - $*(0,y*)). (FDF) For many problems in convex optimization one can associate a useful perturbation function. We give here four examples; see [Rockafellar (1974)] for other interesting ones. Example 1 (Convex programming; see Section 2.9) Let f,9i,---,9n '• X ->• E be proper convex functions with dom/ n C\7=i domgi ^ 0. The problem of minimizing f(x) over the set of those x S X satisfying gi{x) < 0 for alii = 1,..., n is equivalent to the minimization of $(x, 0) for x 6 X, where $:IxF4l, *{x,y):={ f{x) * *(x) <yiV 1 < i <n, -{ 1 +00 otherwise, Xll Introduction and Y := En; the element y* obtained from the right-hand side of (FDF) will furnish the Lagrange multipliers. Example 2 (Control problems) Let F : X xY -±Rbe a, proper convex function and A : X —> Y a linear operator. A control problem (in its abstract form) is to minimize F(x,y) for x € X and y = Ax + yo- The perturbation function to be considered is $ : X x Y —> M. defined by $(x,y) := F{x,Ax + y0+y). Example 3 (Semi-infinite programming) We are as in Example 1 but {1,... ,n} is replaced by a general nonempty set I\ In this case Y = W and $(x,y) := f(x) if gt(x) < yi for all i £ /, $(x,y) := co otherwise. Formula (FDF), or more precisely the Fenchel-Rockafellar duality for­ mula, can also be used for deriving results similar to that in the next ex­ ample.
Recommended publications
  • On Quasi Norm Attaining Operators Between Banach Spaces
    ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results.
    [Show full text]
  • On Fixed Points of One Class of Operators
    ⥬ â¨ç­÷ âã¤÷ù. .7, ü2 Matematychni Studii. V.7, No.2 517.988 ON FIXED POINTS OF ONE CLASS OF OPERATORS Yu.F. Korobe˘ınik Yu. Korobeinik. On xed points of one class of operators, Matematychni Studii, 7(1997) 187{192. Let T : Q ! Q be a selfmapping of some subset Q of a Banach space E. The operator T does not increase the distance between Q and the origin (the null element E) if 8x 2 Q kT xk ≤ kxk (such operator is called a NID operator). In this paper some sucient conditions for the existence of a non-trivial xed point of a NID operator are obtained. These conditions enable in turn to prove some new results on xed points of nonexpanding operators. Let Q be a subset of a linear normed space (E; k · k). An operator T : Q ! E is said to be nonexpanding or NE operator if 8x1; x2 2 Q kT x1 − T x2k ≤ kx1 − x2k: It is evident that each nonexpanding mapping of Q is continuous in Q. The problem of existence of xed points of nonexpanding operators was investi- gated in many papers (see [1]{[9]). The monograph [10] contains a comparatively detailed survey of essential results on xed points of NE operators obtained in the beginning of the seventies. In particular, it was proved that each NE operator in a closed bounded convex subset of a uniformly convex space has at least one xed point in Q (for the de nition of a uniformly convex space see [10], ch.2, x4 or [11], ch.V, x12).
    [Show full text]
  • Sharp Finiteness Principles for Lipschitz Selections: Long Version
    Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425.
    [Show full text]
  • The Continuity of Additive and Convex Functions, Which Are Upper Bounded
    THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity.
    [Show full text]
  • Nonlinear Monotone Operators with Values in 9(X, Y)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 140, 83-94 (1989) Nonlinear Monotone Operators with Values in 9(X, Y) N. HADJISAVVAS, D. KRAVVARITIS, G. PANTELIDIS, AND I. POLYRAKIS Department of Mathematics, National Technical University of Athens, Zografou Campus, 15773 Athens, Greece Submitted by C. Foias Received April 2, 1987 1. INTRODUCTION Let X be a topological vector space, Y an ordered topological vector space, and 9(X, Y) the space of all linear and continuous mappings from X into Y. If T is an operator from X into 9(X, Y) (generally multivalued) with domain D(T), T is said to be monotone if for all xieD(T) and Aie T(x,), i= 1, 2. In the scalar case Y = R, this definition coincides with the well known definition of monotone operator (cf. [ 12,4]). An important subclass of monotone operators T: X+ 9(X, Y) consists of the subdifferentials of convex operators from X into Y, which have been studied by Valadier [ 171, Kusraev and Kutateladze [ 111, Papageorgiou [ 131, and others. Some properties of monotone operators have been investigated by Kirov [7, 81, in connection with the study of the differentiability of convex operators. In this paper we begin our investigation of the properties of monotone operators from X into 3(X, Y) by introducing, in Section 3, the notion of hereditary order convexity of subsets of 9(X, Y). This notion plays a key role in our discussion and expresses a kind of separability between sets and points, Its interest relies on the fact that the images of maximal monotone operators are hereditarily order-convex.
    [Show full text]
  • Ekeland Variational Principles with Set-Valued Objective Functions And
    Ekeland variational principles with set-valued objective functions and set-valued perturbations1 QIU JingHui School of Mathematical Sciences, Soochow University, Suzhou 215006, China Email: [email protected] Abstract In the setting of real vector spaces, we establish a general set-valued Ekeland variational principle (briefly, denoted by EVP), where the objective func- tion is a set-valued map taking values in a real vector space quasi-ordered by a convex cone K and the perturbation consists of a K-convex subset H of the or- dering cone K multiplied by the distance function. Here, the assumption on lower boundedness of the objective function is taken to be the weakest kind. From the general set-valued EVP, we deduce a number of particular versions of set-valued EVP, which extend and improve the related results in the literature. In particu- lar, we give several EVPs for approximately efficient solutions in set-valued opti- mization, where a usual assumption for K-boundedness (by scalarization) of the objective function’s range is removed. Moreover, still under the weakest lower boundedness condition, we present a set-valued EVP, where the objective function is a set-valued map taking values in a quasi-ordered topological vector space and the perturbation consists of a σ-convex subset of the ordering cone multiplied by the distance function. arXiv:1708.05126v1 [math.FA] 17 Aug 2017 Keywords nonconvex separation functional, vector closure, Ekeland variational principle, coradiant set, (C, ǫ)-efficient solution, σ-convex set MSC(2010) 46A03, 49J53, 58E30, 65K10, 90C48 1 Introduction Since the variational principle of Ekeland [12, 13] for approximate solutions of nonconvex minimization problems appeared in 1972, there have been various 1This work was supported by the National Natural Science Foundation of China (Grant Nos.
    [Show full text]
  • Contents 1. Introduction 1 2. Cones in Vector Spaces 2 2.1. Ordered Vector Spaces 2 2.2
    ORDERED VECTOR SPACES AND ELEMENTS OF CHOQUET THEORY (A COMPENDIUM) S. COBZAS¸ Contents 1. Introduction 1 2. Cones in vector spaces 2 2.1. Ordered vector spaces 2 2.2. Ordered topological vector spaces (TVS) 7 2.3. Normal cones in TVS and in LCS 7 2.4. Normal cones in normed spaces 9 2.5. Dual pairs 9 2.6. Bases for cones 10 3. Linear operators on ordered vector spaces 11 3.1. Classes of linear operators 11 3.2. Extensions of positive operators 13 3.3. The case of linear functionals 14 3.4. Order units and the continuity of linear functionals 15 3.5. Locally order bounded TVS 15 4. Extremal structure of convex sets and elements of Choquet theory 16 4.1. Faces and extremal vectors 16 4.2. Extreme points, extreme rays and Krein-Milman's Theorem 16 4.3. Regular Borel measures and Riesz' Representation Theorem 17 4.4. Radon measures 19 4.5. Elements of Choquet theory 19 4.6. Maximal measures 21 4.7. Simplexes and uniqueness of representing measures 23 References 24 1. Introduction The aim of these notes is to present a compilation of some basic results on ordered vector spaces and positive operators and functionals acting on them. A short presentation of Choquet theory is also included. They grew up from a talk I delivered at the Seminar on Analysis and Optimization. The presentation follows mainly the books [3], [9], [19], [22], [25], and [11], [23] for the Choquet theory. Note that the first two chapters of [9] contains a thorough introduction (with full proofs) to some basics results on ordered vector spaces.
    [Show full text]
  • A Note on Bi-Contractive Projections on Spaces of Vector Valued Continuous
    Concr. Oper. 2018; 5: 42–49 Concrete Operators Research Article Fernanda Botelho* and T.S.S.R.K. Rao A note on bi-contractive projections on spaces of vector valued continuous functions https://doi.org/10.1515/conop-2018-0005 Received October 10, 2018; accepted December 12, 2018. Abstract: This paper concerns the analysis of the structure of bi-contractive projections on spaces of vector valued continuous functions and presents results that extend the characterization of bi-contractive projec- tions given by the rst author. It also includes a partial generalization of these results to ane and vector valued continuous functions from a Choquet simplex into a Hilbert space. Keywords: Contractive projections, Bi-contractive projections, Vector measures, Spaces of vector valued functions MSC: 47B38, 46B04, 46E40 1 Introduction We denote by C(Ω, E) the space of all continuous functions dened on a compact Hausdor topological space Ω with values in a Banach space E, endowed with the norm YfY∞ = maxx∈Ω Yf(x)YE. The continuity of a function f ∈ C(Ω, E) is understood to be “in the strong sense", meaning that for every w0 ∈ Ω and > 0 there exists O, an open subset of Ω, containing w0 such that Yf (w) − f(w0)YE < , for every w ∈ O, see [9] or [16]. A contractive projection P ∶ C(Ω, E) → C(Ω, E) is an idempotent bounded linear operator of norm 1. ⊥ A contractive projection is called bi-contractive if its complementary projection P (= I − P) is contractive. In this paper, we extend the characterization given in [6], of bi-contractive projections on C(Ω, E), with Ω a compact metric space, E a Hilbert space that satisfy an additional support disjointness property.
    [Show full text]
  • Discrete Analytic Convex Geometry Introduction
    Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm.
    [Show full text]
  • On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 On Modified l_1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Basnet, Man Bahadur, "On Modified l_1-Minimization Problems in Compressed Sensing" (2013). Graduate Theses and Dissertations. 13473. https://lib.dr.iastate.edu/etd/13473 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On modified `-one minimization problems in compressed sensing by Man Bahadur Basnet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics (Applied Mathematics) Program of Study Committee: Fritz Keinert, Co-major Professor Namrata Vaswani, Co-major Professor Eric Weber Jennifer Davidson Alexander Roitershtein Iowa State University Ames, Iowa 2013 Copyright © Man Bahadur Basnet, 2013. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Jaya and Chandra and to my family (wife Sita, son Manas and daughter Manasi) without whose support, encouragement and love, I would not have been able to complete this work. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . viii ABSTRACT . x CHAPTER 1. INTRODUCTION .
    [Show full text]
  • Semi-Indefinite-Inner-Product and Generalized Minkowski Spaces
    Semi-indefinite-inner-product and generalized Minkowski spaces A.G.Horv´ath´ Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary Nov. 3, 2008 Abstract In this paper we parallelly build up the theories of normed linear spaces and of linear spaces with indefinite metric, called also Minkowski spaces for finite dimensions in the literature. In the first part of this paper we collect the common properties of the semi- and indefinite-inner-products and define the semi-indefinite- inner-product and the corresponding structure, the semi-indefinite-inner- product space. We give a generalized concept of Minkowski space embed- ded in a semi-indefinite-inner-product space using the concept of a new product, that contains the classical cases as special ones. In the second part of this paper we investigate the real, finite dimen- sional generalized Minkowski space and its sphere of radius i. We prove that it can be regarded as a so-called Minkowski-Finsler space and if it is homogeneous one with respect to linear isometries, then the Minkowski- Finsler distance its points can be determined by the Minkowski-product. MSC(2000):46C50, 46C20, 53B40 Keywords: normed linear space, indefinite and semi-definite inner product, arXiv:0901.4872v1 [math.MG] 30 Jan 2009 orthogonality, Finsler space, group of isometries 1 Introduction 1.1 Notation and Terminology concepts without definition: real and complex vector spaces, basis, dimen- sion, direct sum of subspaces, linear and bilinear mapping, quadratic forms, inner (scalar) product, hyperboloid, ellipsoid, hyperbolic space and hyperbolic metric, kernel and rank of a linear mapping.
    [Show full text]
  • On Barycenters of Probability Measures
    On barycenters of probability measures Sergey Berezin Azat Miftakhov Abstract A characterization is presented of barycenters of the Radon probability measures supported on a closed convex subset of a given space. A case of particular interest is studied, where the underlying space is itself the space of finite signed Radon measures on a metric compact and where the corresponding support is the convex set of probability measures. For locally compact spaces, a simple characterization is obtained in terms of the relative interior. 1. The main goal of the present note is to characterize barycenters of the Radon probability measures supported on a closed convex set. Let X be a Fr´echet space. Without loss of generality, the topology on X is generated by the translation-invariant metric ρ on X (for details see [2]). We denote the set of Radon probability measures on X by P(X). By definition, the barycen- ter a ∈ X of a measure µ ∈ P(X) is a = xµ(dx) (1) XZ if the latter integral exists in the weak sense, that is, if the following holds Λa = Λxµ(dx) (2) XZ for all Λ ∈ X∗, where X∗ is the topological dual of X. More details on such integrals can be found in [2, Chapter 3]. Note that if (1) exists, then a = xµ(dx), (3) suppZ µ arXiv:1911.07680v2 [math.PR] 20 Apr 2020 and, by the Hahn–Banach separation theorem, one has a ∈ co(supp µ), where co(·) stands for the convex hull. From now on, we will use the bar over a set in order to denote its topological closure.
    [Show full text]